Wrox Programmer to Programmer™

Professional

Windows

PowerShell
Programming

Snap-ins, Cmdlets, Hosts, and Providers

Arul Kumaravel, Jon White, Naixin Li, Scott Happell, Guohui Xie, Krishna C. Vutukuri

Updates, source code, and Wrox technical support at www.wrox.com

Professional
Windows PowerShel
Programming

ITM

Snap-ins, Cmdlets, Hosts, and Providers

Arul Kumaravel
Jon White
Michael Naixin Li
Scott Happell
Guohui Xie
Krishna C. Vutukuri

WILEY
Wiley Publishing, Inc.

Professional

= ™
Windows PowerShell
Programming

Preface Xvii
Introduction Xix
Chapter 1: IntroductiontoPowerShellccccciiiiiiiiiiiiiiiiaannns 1
Chapter 2: Extending Windows PowerShellcccciiiiiiiiiinnnns 13
Chapter 3: Understanding the Extended Type System 29
Chapter4:DevelopingCmdletsccoiiiiiiiiiiiii it ieeeannaas 63
Chapter5:Providersccciiiiiiiiiiiiiiiiiisssssssssssssssnannnnnns 117
Chapter 6: Hosting the PowerShell Engine in Applications 165
Chapter 7:HostScciviiiiiiiin i isnscsnrnnnnnnnsnnnnsnnnnsnnnnns 197
Chapter 8: Formatting&Output ... i i 233
Appendix A: Cmdlet Verb Naming Guidelinesc.ccciiiiiiinnannnns 257
Appendix B: Cmdlet Parameter Naming Guidelinesccovveunn.. 263
AppendixC:Metadataccoviiinriiiniinsncsnrcnnrnnnnnnnanns 271
Appendix D: Provider Base Classes and Overrides/Interfaces.............. 283
Appendix E: Core Cmdlets for Provider Interaction.......................00 303

Index 307

Professional
Windows PowerShel
Programming

ITM

Snap-ins, Cmdlets, Hosts, and Providers

Arul Kumaravel
Jon White
Michael Naixin Li
Scott Happell
Guohui Xie
Krishna C. Vutukuri

WILEY
Wiley Publishing, Inc.

Windows PowerShell™ Programming:

Snap-ins, Cmdlets, Hosts, and Providers

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-17393-0

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. Windows PowerShell is a trademark of Microsoft
Corporation in the United States and/or other countries. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

About the Author

Arul Kumaravel is currently the Development Manager of the Windows PowerShell team. He has
worked with this team since its early days and led the team in shipping of version 1 of the product,
and is presently leading the development of next version of PowerShell. Fascinated by computers from
an early age, when he first learned programming using BASIC, he went on to get his Master of Science
degree in Computer Science from both the College of Engineering, Madras, India, and the University
of Jowa. As a Microsoft intern, he wrote the first JavaScript/VBScript debugger for Internet Explorer 3,
and was impressed by the potential to make a difference in millions of people’s lives by working for
Microsoft. He has been working at Microsoft for the past 11 years in various groups, shipping multiple
versions of products, including Internet Explorer, the Windows operating system, and Content Manage-
ment Server, and has even dabbled with Software as a Service with small business online services. More
recently, attracted by the business side of technology, Arul has taken on the arduous task of pursuing his
M.B.A. at the Wharton Business School. He can be reached at arulk@hotmail.com.

Jon White is a software engineer who lives and works in the idyllic surroundings of Seattle’s eastern
suburbs. An original member of the PowerShell team at Microsoft, his professional career started in
the Administrative Tools group in Windows Server. As a hobbyist, Jon learned programming in his
early teens after his father bought an 8088-based PC clone at a second-hand shop. The PC came with
MS-DOS 2.0, which featured debug.exe with a 16-bit disassembler, but no assembler. As a result, Jon’s
first dive into programming was disassembling long tables of bytes to create a reverse-lookup dictionary
for manually converting assembly programs into executable binary code. Coincidentally, later in life he
filed the bug which removed debug. exe from 64-bit Windows. As a member of the PowerShell team,
he wrote the language’s first production script, when he converted the team’s test harness from Perl to
PowerShell script in 2004. When he’s not working (or writing about work) he’s either sailing or playing
with fire in the backyard. You can contact him at jwhe@microsoft.com.

Michael Naixin Li is the Senior Test Lead working on the Windows PowerShell team and currently
oversees the testing of Windows PowerShell 2.0. Before Windows PowerShell, Michael worked on vari-
ous major projects at Microsoft, including the development of MSN 1.x and 2.x, quality management for
the COM Services component in Windows 2000, NetDocs Web Client Access, Web Services in Hailstorm,
and Software Licensing Service in Windows Vista. Before joining Microsoft, Michael was an assistant
professor at Shanghai University of Science and Technology (now called Shanghai University). He holds
a Ph.D. in Computer Science from Colorado State University.

Scott Happell has been working as a software engineer and tester for 10 years. Three of those years have
been on the Windows PowerShell team, which was what brought him to Microsoft from New Jersey,
where he worked at an Internet startup that went belly-up. Scott recently left Microsoft to become a
recording engineer/rock star and is trying to find cool ways to use PowerShell to help him create music.

George Xie was a Senior Developer in the Windows PowerShell team for three years, mainly focusing
in the area of snap-in model and scripting language. Recently George joined Windows Mobile organi-
zation for the Mobile Device Management product. Before joining Microsoft, George worked for Siebel
Systems Inc. for several years.

Krishna Chythanya Vutukuri is a Software Developer working on the Windows PowerShell team. Before
Windows PowerShell, Krishna worked on various projects at Microsoft, which included the development
of Windows Presentation Foundation. Before joining Microsoft, Krishna held various product develop-
ment positions at Hewlett-Packard India Software Operations and Wipro Technologies. He holds a M.Sc
(Tech.) in Information Systems from Birla Institute of Technology and Science, Pilani, India.

Executive Editor
Chris Webb

Development Editor
Howard Jones

Technical Editor
Marco Shaw

Production Editor
Rachel McConlogue

Copy Editor
Luann Rouff

Credits

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Osborn

Contents

Preface Xvii
Introduction Xix

Chapter 1: Introduction to Powershet === 1

Windows PowerShell Design Principles 1
Preserve the Customer’s Existing Investment 2
Provide a Powerful, Object-Oriented Shell 2
Extensibility, Extensibility, Extensibility 2
Tear Down the Barriers to Development 2

A Quick Tour of Windows PowerShell 3
Cmdlets 3

High-Level Architecture of Windows PowerShell 9
Host Application 9
Windows PowerShell Engine 10
Windows PowerShell Snap-ins 10

Summary 11

Chapter 2: Extending Windows PowerShell 13

Types of PowerShell Snap-ins 13

Creating a Standard PowerShell Snap-in 14
Writing a PowerShell Snap-in 14
Registering Your PowerShell Snap-in 17
Listing Available PowerShell Snap-ins 19
Loading a PowerShell Snap-in to a Running Shell 19
Removing a PowerShell Snap-in from a Running Shell 20
Unregistering a PowerShell Snap-in 20
Registering a PowerShell Snap-in without Implementing a Snap-in Clas 21
Saving Snap-in Configuration 22
Starting PowerShell with a Saved Snap-in Configuration 22
Using a Profile to Save a Snap-in Configuration 23

Creating a Custom PowerShell Snap-in 23
Writing a Custom PowerShell Snap-in 23
Using a Custom PowerShell Snap-in 25

Summary 27

Contents

Chapter 3: Understanding the Extended Type System 29
PSObject 29
Constructing a PSObject 30
PSObject(Object) 31
PSObject() 31
PSObject.AsPSObject(someObject) 32
ImmediateBaseObject and BaseObject 33
Members 34
PSMemberIinfoCollection 35
ReadOnlyPSMemberinfoCollection 36
Base, Adapted, and Extended Members 37
Types of Members 37
Properties 38
Methods 46
Sets 51
TypeNames 53
Lookup Algorithm 54
Distance Algorithm 54
PSObject Intrinsic Members and MemberSets 55
Errors and Exceptions 55
Runtime Errors 55
Initialization Errors 56
Type Conversion 57
Standard PS Language Conversion 57
Custom Converters 58
ToString Mechanism 60
Type Configuration (TypeData) 60
Well-Known Members 62
Script Access 62
Summary 62
Chapter 4: Developing Cmdlets 63
Getting Started 63
Command-Line Parsing 65
Command Discovery 65
Parameter Binding 66
Command Invocation 67
Using Parameters 67
Mandatory Parameters 67
Positional Parameters 68

Contents

Parameter Sets 71
Parameter Validation 78
Parameter Transformation 80
Processing Pipeline Input 84
Pipeline Parameter Binding 87
Generating Pipeline Output 91
Reporting Errors 92
ErrorRecord 93
ErrorDetails 95
Non-terminating Errors and Terminating Errors 97
Supporting ShouldProcess 98
Confirming Impact Level 100
ShouldContinue() 101
Working with the PowerShell Path 101
Documenting Cmdlet Help 106
Best Practices for Cmdlet Development 114
Naming Conventions 114
Interactions with the Host 115
Summary 116
Chapter 5: Providers 117
Why Implement a Provider? 118
Providers versus Cmdlets 118
Essential Concepts 119
Paths 119
Drives 121
Error Handling 121
Capabilities 122
Hello World Provider 123
Built-in Providers 125
Alias Provider 125
Environment Provider 126
FileSystem Provider 126
Function Provider 126
Registry Provider 127
Variable Provider 128
Certificate Provider 128
Base Provider Types 128
CmdletProvider 129
DriveCmdletProvider 129
ltemCmdletProvider 129

Xi

Contents

ContainerCmdletProvider
NavigationCmdletProvider
Optional Provider Interfaces
IContentCmdletProvider
IPropertyCmdletProvider
IDynamicPropertyCmdletProvider
ISecurityDescriptorCmdletProvider
CmdletProvider
Methods and Properties on CmdletProvider
DriveCmdletProvider
[temCmdletProvider
ContainerCmdletProvider
NavigationCmdletProvider
Design Guidelines and Tips
Summary

Chapter 6: Hosting the P Shell Engine in Applicati

Runspaces and Pipelines
Getting Started
Executing a Command Line
Using Runspacelnvoke
Using Runspace and Pipeline
Using the Output of a Pipeline
The Return Value of Invoke()
Using PSObject Objects Returned from a Pipeline
Handling Terminating Errors
Input, Output, and Errors for Synchronous Pipelines
Passing Input to Your Pipeline
The Output Pipe in Synchronous Execution
Retrieving Non-Terminating Errors from the Error Pipe
The ErrorRecord Type
Other Pipeline Tricks
Nested Pipelines
Reusing Pipelines
Copying a Pipeline Between Runspaces
Configuring Your Runspace
Creating a Runspace with a Custom Configuration
Adding and Removing Snap-Ins
Creating RunspaceConfiguration from a Console File
Creating RunspaceConfiguration from an Assembly
Using SessionStateProxy to Set and Retrieve Variables
Fine-Tuning RunspaceConfiguration

Xii

131
132
132
132
133
134
134
134
136
139
141
147
153
162
163

165

165
166
166
166
168
170
170
170
171
172
172
173
173
174
174
174
175
175
176
176
177
177
177
178
179

Contents

Running a Pipeline Asynchronously 181
Calling InvokeAsync() 181
Closing the Input Pipe 182
Reading Output and Error from an Asynchronous Pipeline 182
Monitoring a Pipeline’s StateChanged Event 185
Reading Terminating Errors via PipelineStatelnfo.Reason 186
Stopping a Running Pipeline 187

Asynchronous Runspace Operations 187
The OpenAsync() Method 187
Handling the Runspace’s StateChanged Event 188

Constructing Pipelines Programmatically 189
Creating an Empty Pipeline 189
Creating a Command 189
Merging Command Results 190
Adding Command Parameters 191
Adding Commands to the Pipeline 192

Cmdlets as an API Layer for GUI Applications 193
High-Level Architecture 193
Keys to Successful GUI Integration 194
Providing a Custom Host 194

Summary 195

Chapter 7: Hosts 197

Host-Windows PowerShell Engine Interaction 197

Built-ln Cmdlets That Interact with the Host 199
Write-Debug 199
Write-Verbose 200
Write-Warning 202
Write-Progress 203
Write-Host and Out-Host 203
Read-Host 204

Cmdlet and Host Interaction 204

PSHost Class 207
Instanceld 208
Name 209
Version 210
CurrentCulture 210
CurrentUICulture 210
PrivateData 211
EnterNestedPrompt 211
ExitNestedPrompt 212

Xiii

Contents

Application Notification Methods 214
SetShouldExit 214
PSHostUserInterface Class 221
WriteDebugLine 222
WriteVerboseline 223
WriteWarningLine 223
WriteProgress 223
WriteErrorLine 224
Write Methods 224
Prompt Method 224
PromptForCredential 226
Read Methods 227
PSHostRawUserInterface Class 227
Summary 231
Chapter 8: Formatting & Output 233
The Four View Types 233
Table: format-table 234
List: format-list 234
Custom: format-custom 235
Wide: format-wide 235
Formatting without#.format.ps1xml 236
Format Configuration File Example 237
Loading Your Format File(s) 238
Update-formatdata 239
Snap-ins 240
RunspaceConfiguration API 240
Anatomy of a Format Configuration File 240
View 241
Name 241
ViewSelectedBy 241
GroupBy 242
TableControl 243
TableHeaders 243
TableRowEntries 244
ListControl 244
ListEntries 245
Wide Control 246
WideEntries 246
Custom Control 246
CustomEntries 248

Xiv

Contents

Miscellaneous Configuration Entries 248
Wrap 248
AutoSize 248

Scenarios 249
Format Strings 249
Formatting Deserialized Objects 250
Class Inheritance 250
Selection Sets 253
Colors 253

Summary 255

q lix A: Cmdlet Verb Naming Guideli 257

Common Verbs 257

Data Verbs 259

Communication Verbs 260

Diagnostic Verbs 260

Lifecycle Verbs 261

Security Verbs 261

. lix B: Cmdlet P ter Naming Guideli 263

Ubiquitous Parameters 263

Activity Parameters 264

Date/Time Parameters 266

Format Parameters 266

Property Parameters 267

Quantity Parameters 268

Resource Parameters 268

Security Parameters 269

Appendix C: Metadata 271

CmdletAttribute 271
Cmdlet Attribute Example 272

ParameterAttribute 272
ParameterAttribute Example 273

AliasAttribute 273
AliasAttribute Example 273

Argument Validation Attributes 273
ValidateSetAttribute 274
ValidatePatternAttribute 274
ValidateLengthAttribute 274

XV

Contents

ValidateCountAttribute
ValidateRangeAttribute

Allow and Disallow Attributes

Extending Parameter Metadata Attributes

Adding Attributes to Dynamic Parameters at Runtime

AllowNullAttribute
AllowEmptyStringAttribute
AllowEmptyCollectionAttribute
ValidateNotNullAttribute
ValidateNotNullOrEmptyAttribute
CredentialAttribute

ValidateArgumentsAttribute
ValidateEnumeratedArgumentsAttribute
ArgumentTransformationAttribute

ValidateScriptAttribute

; lix D: Provider Base Cl | Overrides/Interf

CmdletProvider

Dr

iveCmdletProvider

ItemCmdletProvider
ContainerCmdletProvider
NavigationCmdletProvider
IContentCmdletProvider
IContentReader

IContentWriter
IPropertyCmdletProvider
IDynamicPropertyCmdletProvider

: lix E: Core Cmdlets for Provider Interacti 303

Drive-Specific Cmdlets
Item-Specific Cmdlets
Container-Specific Cmdlets
Property-Specific Cmdlets

Dynamic Property Manipulation Cmdlets

Content-Related Cmdlets
Security Descriptor—Related Cmdlets

XVi

Index

275
275
276
276
276
277
277
277
277
278
278
279
279
280
281

283

283
287
288
290
294
295
296
297
297
298

303
303
304
304
305
305
305

307

Preface

Welcome to Professional Windows PowerShell Programming.

Way back in 2003, I attended a talk at a conference center at Microsoft by some engineers from the
Microsoft Management Console team who were giving a demonstration of a prototype enhancement

to MMC. The prototype was one of the early murmurs of Microsoft’s response to the deluge of customer
feedback they’d received about the Windows administrative user experience after the delivery of their
first truly Internet-focused server operating system, Windows 2000 Server. The feedback wasn’t all good.

Windows 2000 Server started its long evolution as a text-based file manager for DOS. During the bulk
of its development, there was simply no idea that anyone would use it for anything other than checking
their mail and organizing a 20-megabyte hard disk. As a result, the management story for Windows 2000
Server was provided in The Windows Way, which was a rich interactive experience, a full set of native
and COM APIs, and no bridge between the two. In Linux, you could write a shell script to configure your
mail and DNS servers; in Windows, you had to either do it manually or learn C++ and COM.

The incorporation of Visual Basic Script and JavaScript into Windows served this niche to a certain
extent, but never really brought parity between the GUI experience and the command-line experience.
Since these scripting languages interact with the operating system through a subset of COM, and a GUI
application can use all of COM, call the Win32 API, and (in the case of certain programs such as Task
Manager) call directly into the native kernel API, the capabilities of Windows scripts were always
eclipsed by what was provided in the GUI.

But back to the demo: People filed into the room, a pair of engineers behind the podium broke the ice
by joking about the PA system, the lights dimmed, and they started the show. The new MMC prototype,
they revealed, was a GUI that used a command-line engine as its API layer. Every node expansion became
a query, every “OK” click became a command, and every action taken by the GUI operator was displayed
as script at the bottom of the screen with 100% fidelity. Old engineers shifted nervously in their seats,
senior managers sat entranced with dollar signs in their eyes, and the caterer, noticing the direction of
everyone’s eyes, palmed an hors d’oeuvre and went outside to smoke a cigarette.

This demo ushered in what, in the following three years, would become Windows PowerShell.

Version 1, available for download on the web and as an optional component on Windows Server 2008,
provides a rich programming environment for users of every stripe, and for the first time gives Windows
users a consistent glide path from the command-line experience all the way to COM and beyond.

This book is intended for the PowerShell snap-in and host developer audience, and introduces the reader
to PowerShell programming from the API level. Written by members of the PowerShell v1.0 team, it
covers development of cmdlets, providers, snap-ins, hosting applications, and custom host implementa-
tions in greater depth than the SDK documentation.

Enjoy.

Introduction

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

Notes to the current discussion are offset and placed in italics like this.

As for styles in the text:

Q We highlight new terms and important words when we introduce them.

0O We show keyboard strokes like this: Ctrl+A.

0 Filenames, URLs, and code within the text appear like so: persistence.properties.
Q

We present code in two different ways:
We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that's particularly important
in the present context.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book. Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-0-470-17393-0.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Introduction

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

XX

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and to interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Introduction to PowerShell

Welcome to Windows PowerShell, the new object-based command-line interface shell and scripting
language built on top of .NET. PowerShell provides improved control and automation of IT admin-
istration tasks for the Windows platform. It is designed to make IT professionals and developers
more productive.

Several books that introduce end-user IT professionals to Windows PowerShell are already avail-
able, but PowerShell development from the perspective of cmdlet, provider, and host developers
has gone largely unmentioned. This book attempts to fill that gap by introducing the reader to the
concepts, components, and development techniques behind building software packages that lever-
age Windows PowerShell. This book is written for developers who want to extend the functionality
of Windows PowerShell and extend their applications using PowerShell.

Traditionally, when developers write a command-line utility, they have to write code for parsing
the parameters, binding the argument values to parameters during runtime. In addition, they have
to write code for formatting the output generated by the command. Windows PowerShell makes
that easy by providing a runtime engine with its own parser. It also provides functionality that
enables developers to add custom formatting when their objects are displayed. By performing
the common tasks associated with writing command-line utilities, Windows PowerShell enables
developers to focus on the business logic of their application, rather than spend development time
solving universal problems.

Windows PowerShell Design Principles

Windows PowerShell was designed in response to years of customer feedback about the adminis-
trative experience on Microsoft Windows. Early on, many users asked why some of the traditional
Unix shells weren’t licensed and included in Windows, and it became apparent that the right answer
was to produce a whole new kind of shell that would leave these legacy technologies behind. This
thinking was distilled into four guiding principles that provided the foundation for PowerShell’s
design effort.

Chapter 1: Introduction to PowerShell

Preserve the Customer’s Existing Investment

When a new technology is rolled out, it takes time for the technology to be adopted. Moreover, customers
are likely to have already invested a lot in existing technologies. It’s unreasonable to expect people to
throw out their existing investments, which is why PowerShell was designed from the ground up to be
compatible with existing Windows Management technologies.

In fact, PowerShell runs existing commands and scripts seamlessly. You can make use of PowerShell’s
integration with COM, WMI, and ADSI technologies alongside its tight integration with .NET. Indeed,
PowerShell is the only technology that enables you to create and work with objects from these various
technologies in one environment. You can see examples of this and other design principles in a quick
tour of PowerShell later in the chapter.

Provide a Powerful, Object-Oriented Shell

cMD. exe and other traditional shells are text-based, meaning that the commands in these shells take text
as input and produce text as output. Even if these commands convert the text internally into objects, when
they produce output they convert it back to text. In traditional shells, when you want to put together
simple commands in the pipeline, a lot of text processing is done between commands to produce desired
output. Tools such as SED, AWK, and Perl became popular among command-line scripters because of
their powerful text-processing capabilities.

PowerShell is built on top of .NET and is an object-based shell and scripting language. When you pipe
commands, PowerShell passes objects between commands in the pipeline. This enables objects to be
manipulated directly and to be passed to other tools. PowerShell’s tight integration with .NET brings the
functionality and consistency of .NET to IT professionals without requiring them to master a high-level
programming language such as C# or VB.NET.

Extensibility, Extensibility, Extensibility

This design principle aims to make the IT administrator more productive by providing greater control
over the Windows environment and accelerating the automation of system administration. Adminis-
trators can start PowerShell and use it immediately without having to learn anything because it runs
existing commands and scripts, and is therefore easy to adopt. It is an easy to use shell and language for
administrators.

All commands in PowerShell are called cmdlets (pronounced ““commandlet”), and they use verb-noun
syntax — for example, Start-Service, Stop-Service or Get-Process, Get-WiMIObject, and so on. The
intuitive nature of verb-noun syntax makes learning commands easy for administrators. PowerShell
includes more than 100 commands and utilities that are admin focused. In addition, PowerShell provides
a powerful scripting language that supports a wide range of scripting styles, from simple to sophisticated.
This enables administrators to write simple scripts and learn the language as they go. With this combined
functionality and ease of use, PowerShell provides a powerful environment for administrators to perform
their daily tasks.

Tear Down the Barriers to Development

Another design principle of PowerShell is to make it easy for developers to create command-line tools
and utilities. It provides common argument parsing code, parameter binding code that enables

Chapter 1: Introduction to PowerShell

developers to write code only for the admin functionality they are providing. The PowerShell devel-
opment model separates the processing of objects from formatting and outputting. PowerShell provides
a set of cmdlets for manipulating objects, formatting objects, and outputting objects. This eliminates the
need for developers to write this code. PowerShell leverages the power of .NET, which enables develop-
ers to take advantage of the vast library of this framework. It provides common functionality for logging,
error handling, and debugging and tracing capabilities.

A Quick Tour of Windows PowerShell

This section presents a quick tour of Windows PowerShell. We'll start with a brief look at installing the
program, and then move right into a discussion of cmdlets.

You start Windows PowerShell either by clicking the Windows PowerShell shortcut link or by typing
PowerShell in the Run dialog box (see Figure 1-1).

Figure 1-1: Click the shortcut link and you’ll get the prompt shown here.

Cmdlets

Windows PowerShell enables access to several types of commands, including functions, filters, scripts,
aliases, cmdlets, and executables (applications). PowerShell’s native command type is the cmdlet. A
cmdlet is a simple command used for interacting with any management entity, including the operating
system. You can think of a cmdlet as equivalent to a built-in command in another shell. The traditional
shell generally processes commands as separate executables, but a cmdlet is an instance of a .NET class,
and runs within PowerShell’s process.

Chapter 1: Introduction to PowerShell

Windows PowerShell provides a rich set of cmdlets, including several that enhance the discoverability of
the shell’s features. We begin our tour of Windows PowerShell by learning about a few cmdlets that will
help you get started in this environment. The first cmdlet you need to know about is get-help:

PS C:\> get-help
TOPIC
Get-Help

SHORT DESCRIPTION
Displays help about PowerShell cmdlets and concepts.

LONG DESCRIPTION

SYNTAX
get-help {<CmdletName> | <TopicName>}
help {<CmdletName> | <TopicName>}
<CmdletName> -?

"Get-help" and "-?" display help on one page.
"Help" displays help on multiple pages.

Examples:
get-help get-process : Displays help about the get-process cmdlet.
get-help about-signing : Displays help about the signing concept.
help where-object : Displays help about the where-object cmdlet.
help about_foreach : Displays help about foreach loops in PowerShell.
match-string -? : Displays help about the match-string cmdlet.

You can use wildcard characters in the help commands (not with -?).
If multiple help topics match, PowerShell displays a list of matching
topics. If only one help topic matches, PowerShell displays the topic.

Examples:
get-help * : Displays all help topics.
get-help get-* : Displays topics that begin with get-.
help *object* : Displays topics with "object" in the name.

get-help about* : Displays all conceptual topics.

For information about wildcards, type:
get-help about_wildcard

REMARKS

Chapter 1: Introduction to PowerShell

To learn about PowerShell, read the following help topics:
get-command Displays a list of cmdlets.
about_object Explains the use of objects in PowerShell.
get-member Displays the properties of an object.

Conceptual help files are named "about_<topic>", such as:
about_regular_expression.

The help commands also display the aliases on the system.
For information about aliases, type:

get-help about_alias

PS C:\>

As you can see, get-help provides information about how to get help on PowerShell cmdlets and con-
cepts. This is all well and good, but you also need to be able to determine what commands are available
for use. The get-command cmdlet helps you with that:

PS C:\> get-command

CommandType Name Definition
Cmdlet Add-Content Add-Content [-P
Cmdlet Add-History Add-History [[-
Cmdlet Add-Member Add-Member [-Me
Cmdlet Add-PSSnapin Add-PSSnapin [-
Cmdlet Clear-Content Clear-Content [
Cmdlet Clear-Item Clear-Item [-Pa
Cmdlet Clear-ItemProperty Clear-ItemPrope
Cmdlet Clear-Variable Clear-Variable
Cmdlet Compare-0bject Compare-0bject
Cmdlet ConvertFrom-SecureString ConvertFrom-Sec
Cmdlet Convert-Path Convert-Path [-
Cmdlet ConvertTo-Html ConvertTo-Html
Cmdlet ConvertTo-SecureString ConvertTo-Secur
Cmdlet Copy-Item Copy-Item [-Pat

As shown in the preceding output, get-command returns all the available commands. You can also find

cmdlets with a specific verb or noun:

PS C:\> get-command -verb get

CommandType Name Definition

Cmdlet Get-Acl Get-Acl [[-Path]
Cmdlet Get-Alias Get-Alias [[-Nam
Cmdlet Get-AuthenticodeSignature Get-Authenticode
Cmdlet Get-ChildItem Get-ChildItem [[
Cmdlet Get-Command Get-Command [[-A

Chapter 1: Introduction to PowerShell

Cmdlet Get-Content Get-Content [-Pa
Cmdlet Get-Credential Get-Credential [
Cmdlet Get-Culture Get-Culture [-Ve
Cmdlet Get-Date Get-Date [[-Date
Cmdlet Get-EventLog Get-EventLog [-L
Cmdlet Get-ExecutionPolicy Get-ExecutionPol
Cmdlet Get-Help Get-Help [[-Name
Cmdlet Get-History Get-History [[-I
Cmdlet Get-Host Get-Host [-Verbo
Cmdlet Get-Item Get-Item [-Path]
Cmdlet Get-ItemProperty Get-ItemProperty
Cmdlet Get-Location Get-Location [-P
Cmdlet Get-Member Get-Member [[-Na
Cmdlet Get-PfxCertificate Get-PfxCertifica
Cmdlet Get-Process Get-Process [[-N
Cmdlet Get-PSDrive Get-PSDrive [[-N
Cmdlet Get-PSProvider Get-PSProvider [
Cmdlet Get-PSSnapin Get-PSSnapin [[-
Cmdlet Get-Runspace Get-Runspace [[-
Cmdlet Get-Service Get-Service [[-N
Cmdlet Get-TraceSource Get-TraceSource

Cmdlet Get-UICulture Get-UICulture [-
Cmdlet Get-Unique Get-Unique [-Inp
Cmdlet Get-Variable Get-Variable [[-
Cmdlet Get-WmiObject Get-WmiObject [-

When commands are executed, their output is returned to the shell in the form of .NET objects. (In the
case of native commands, the text output of the command is converted to .NET string objects before
being returned.) These objects can be directly queried and manipulated by using the object’s properties
and methods. Fortunately, you don’t have to know the properties and methods of each object in order to
manipulate it. If you're unfamiliar with an object’s type, you can use the get-member cmdlet to examine
its members:

PS C:\> "Hello" | get-member

TypeName: System.String

Name MemberType Definition

Clone Method System.Object Clone()

CompareTo Method System.Int32 CompareTo (Object value), ...
Contains Method System.Boolean Contains (String value)
CopyTo Method System.Void CopyTo (Int32 sourcelIndex, ...
EndsWith Method System.Boolean EndsWith(String value)...
Equals Method System.Boolean Equals (Object obj), Sy...
GetEnumerator Method System.CharEnumerator GetEnumerator ()
GetHashCode Method System.Int32 GetHashCode ()

GetType Method System.Type GetType ()

GetTypeCode Method System.TypeCode GetTypeCode ()

get_Chars Method System.Char get_Chars(Int32 index)
get_Length Method System.Int32 get_Length()

IndexOf Method System.Int32 IndexOf (Char value, Int3...

Chapter 1: Introduction to PowerShell

IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf, ...
Insert Method System.String Insert (Int32 startIndex...
IsNormalized Method System.Boolean IsNormalized(), System...
LastIndexOf Method System.Int32 LastIndexOf (Char value, ...
LastIndexOfAny Method System.Int32 LastIndexOfAny (Char[] an...
Normalize Method System.String Normalize(), System.Str...
PadLeft Method System.String PadLeft (Int32 totalwidt...
PadRight Method System.String PadRight (Int32 totalwid...
Remove Method System.String Remove (Int32 startIndex...
Replace Method System.String Replace (Char oldChar, C...
Split Method System.String[] Split(Params Char[] s...
StartsWith Method System.Boolean StartsWith(String valu...
Substring Method System.String Substring (Int32 startIn...
ToCharArray Method System.Char[] ToCharArray(), System.C...
ToLower Method System.String ToLower (), System.Strin...
ToLowerInvariant Method System.String ToLowerInvariant ()
ToString Method System.String ToString(), System.Stri...
ToUpper Method System.String ToUpper (), System.Strin...
ToUpperInvariant Method System.String ToUpperInvariant ()

Trim Method System.String Trim(Params Char[] trim...
TrimEnd Method System.String TrimEnd(Params Char[] t...
TrimStart Method System.String TrimStart (Params Char[]...
Chars ParameterizedProperty System.Char Chars(Int32 index) {get;}
Length Property System.Int32 Length {get;}

Windows PowerShell also enables you to execute existing native operating system commands and scripts.
The following example executes the ipconfig.exe command to find out about network settings:

PS C:\> ipconfig
Windows IP Configuration
Wireless LAN adapter Wireless Network Connection:

Connection-specific DNS Suffix . : ARULHOMELAN

Link-local IPv6 Address : feB80::c4e0:69b3:5d35:9b4b%9
IPv4d Address. :192.168.1.13

Subnet Mask : 255.255.255.0

Default Gateway : 192.168.1.1

In a traditional shell, when you want to get the IP address output by the IpConfig.exe utility, you
have to perform text parsing. For example, you might do something like get the ninth line of text
from the output and then get the characters starting from the thirty-ninth character until the end of
the line to get the IP address. PowerShell enables you to perform this style of traditional text processing,
as shown here:

PS C:\Users\arulk> $a = ipconfig
PS C:\Users\arulk> Sa[8]

IPv4 Address. : 192.168.1.13
PS C:\Users\arulk> $a[10].Substring(39)
192.168.1.13

However, this kind of text processing is very brittle and error prone. If the output of IPconfig.exe
changes, then the preceding script breaks. For example, because PowerShell converts to text output

Chapter 1: Introduction to PowerShell

by exes and scripts as String objects, it is possible to achieve better text processing. In the preceding
example, we are looking for the line that contains IP in the text:

PS C:\> Smatch = @($a | select-string "IP")
PS C:\> Sipstring = S$match[0].line
PS C:\> S$ipstring
IPv4 Address. :192.168.1.13
PS C:\> S$index = $ipstring.indexof(": ")
PS C:\> S$ipstring.Substring($index+2)
PS C:\> S$ipaddress = [net.ipaddress]S$Sipstring.Substring($index+2)
PS C:\> Sipaddress

In the preceding script, the first line searches for the string IP in the result variable $a. @ (...) and converts
the result of execution into an array. The reason we do this is because we will get multiple lines that
match the IP in computers that have multiple network adapters. We are going to find out the ipaddress
in the first adapter. The result returned by select-string is a MatchInfo object. This object contains

a member Line that specifies the actual matching line. (I know this because I used get-member to find
out.) This string contains the IP address after the characters ": ". Because the Line property is a String
object, you use the String object’s Index0f method (again, I used get-member) to determine the location
where the IP address starts. You then use Substring with an index of + 2 (for ": " characters) to get the
IP address string. Next, you convert the IP address string into the NET 1pAddress object, which provides
more type safety. As you can see, Windows PowerShell provides great functionality for doing traditional
text processing.

Next, let’s look at the COM support in PowerShell:

PS C:\> Sie = new-object -com internetexplorer.application
PS C:\> Sie.Navigate2 ("http://blogs.msdn.com/powershell")
PS C:\> Sie.visible = S$true

PS C:\> S$ie.Quit()

You can create COM objects using the new-object cmdlet, with the -com parameter specifying the pro-
grammatic ID of the COM class. In the preceding example, we create an Internet Explorer object and
navigate to the blog of the Windows PowerShell team. As before, you can use get-member to find out all
the properties and methods a COM object supports. Do you see a pattern here?

In addition to COM, PowerShell also has great support for WMI.:

PS C:\Users\arulk> $a = get-wmiobject win32_bios
PS C:\Users\arulk> Sa

SMBIOSBIOSVersion : Version 1.50

Manufacturer : TOSHIBA

Name : v1.50V
SerialNumber : 76047600H
Version : TOSHIB - 970814

Using get-wmiobject, you can create any WMI object. The preceding example creates an instance of a
Win32_Bios object.

Now that you've seen some of PowerShell’s capabilities firsthand, let’s take a look at what goes on under
the hood while you're providing this functionality to the shell’s user.

Chapter 1: Introduction to PowerShell

High-Level Architecture of Windows
PowerShell

PowerShell has a modular architecture consisting of a central execution engine, a set of extensible cmdlets
and providers, and a customizable user interface. PowerShell ships with numerous default implemen-
tations of the cmdlets, providers, and the user interface, and several third-party implementations are
provided by other groups at Microsoft and by external companies.

The following sections provide details about each of the architectural elements illustrated in Figure 1-2.

Console.exe

Application code

| Host Interface |
\ f
| Runspace API | Engine
N

Pipeline |

| Cmdlet Interface \

A Provider Infrastructure
/ Cmdlet Provider Interface

PowerShell Snap—ir:s ‘\ / /l \ |
PowerShell Snap-ins \ / / \ |
| Get-Process | | Get-Iltem | A

File System Provider
Registry Provider
XML Provider

L

Application Cmdlets

Application Providers

Figure 1-2: The high-level architecture of Windows PowerShell

Host Application

The Windows PowerShell engine is designed to be hostable in different application environments. In
order to make use of PowerShell functionality, it needs to be hosted in an application that implements
the Windows PowerShell host interface. The host interface is a set of interfaces that provides functionality
enabling the engine to interact with the user. This includes but is not limited to the following:

O Getting input from users
0 Reporting progress information
QO Output and error reporting
The hosting application can be a console application, a windows application, or a Web application.

Windows PowerShell includes a default hosting application called Powershell.exe, which is console
based. If you're like most developers, you'll rarely need to write your own host implementation. Instead,

9

Chapter 1: Introduction to PowerShell

you’ll make use of PowerShell’s host interface to interact with the engine. You only need to write a
hosting application when you have application requirements for an interface that is richer than the inter-
face provided by the default hosting application. Writing a hosting application involves implementing
Windows PowerShell host interfaces and using the Windows PowerShell Runspace and Pipeline APIs
to invoke commands. Together, these two interfaces enable communication between the application
and the Windows PowerShell engine. You'll learn the details about writing a hosting application in
Chapter 7.

Windows PowerShell Engine

The Windows PowerShell engine contains the core execution functionality and provides the execution
environment for cmdlets, providers, functions, filters, scripts, and external executables. The engine
exposes the functionality through the Runspace interface, which is used by the hosting application to
interact with the engine. At a high level, the engine consists of a runspace, which is like an instance of
the engine, and one or more pipelines, which are instances of command lines. These pipeline components
interact with the cmdlets through the cmdlet interface. All cmdlets need to implement this interface to
participate in the pipeline. Similarly, the pipeline interacts with the providers through a well-defined set
of provider interfaces. We will delve into more details about the engine as we progress in the book.

Windows PowerShell Snap-ins

Windows PowerShell provides an extensible architecture for adding functionality to the shell by means
of snap-ins. A snap-in is a NET assembly or set of assemblies that contains cmdlets, providers, type
extensions, and format metadata. All the commands and providers that ship as part of the Windows
PowerShell product are implemented as a set of five snap-ins. You can view the list of snap-ins using the
get-pssnapin cmdlet:

PS C:\> get-pssnapin

Name : Microsoft.PowerShell.Core
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains Windows PowerShell manage-

ment cmdlets used to manage components of Windows PowerShell.

Name : Microsoft.PowerShell.Host
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets used by the Win-

dows PowerShell host.

Name : Microsoft.PowerShell.Management

PSVersion : 1.0

Description : This Windows PowerShell snap-in contains management cmdlets used to man-
age Windows components.

Name : Microsoft.PowerShell.Security
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets to manage Windows Pow-

erShell security.

Name : Microsoft.PowerShell.Utility

10

Chapter 1: Introduction to PowerShell

PSVersion : 1.0
Description : This Windows PowerShell snap-in contains utility Cmdlets used to manip-
ulate data.

Summary

This chapter introduced you to some basic cmdlets to help with discoverability. It also described the
high-level architecture of PowerShell. From here, we’ll move on to the first step beyond the cmdlet level:
learning how to develop a custom snap-in package. The techniques in the following chapter lay the
foundation for creating your own cmdlets and providers. You'll also learn about PowerShell’s model for
distributing and deploying the code you write.

11

|

Extending Windows
PowerShell

As you saw in Chapter 1, Windows PowerShell provides an extensible architecture that allows
new functionality to be added to the shell. This new functionality can be in the form of cmdlets,
providers, type extensions, format metadata, and so on. A Windows PowerShell snap-in is a .NET
assembly that contains cmdlets, providers, and so on. Windows PowerShell comes with a set of
basic snap-ins that offer all the basic cmdlets and providers built into the shell. You write a snap-in
when you want your cmdlets or providers to be part of the default Windows PowerShell. When a
snap-in is loaded in Windows PowerShell, all cmdlets and providers in the snap-in are made avail-
able to the user. This model allows administrators to customize the shell by adding or removing
snap-ins to achieve precise sets of providers and cmdlets.!

This chapter first introduces the two types of PowerShell snap-ins and describes when to use each
one. It then shows you step by step how to author, register, and use both types of snap-ins. To
make it more meaningful, the code examples also show the minimum coding needed for authoring
cmdlets.

Note that all code examples in this chapter and the rest of the book are written in C#.

Types of PowerShell Snap-ins

Any .NET assembly becomes a Windows PowerShell snap-in when the assembly implements a
snap-in installer class. Windows PowerShell supports two distinct types of snap-in installer classes.
The default recommended type is PSSnapin, which registers all cmdlets and providers in a single
contained assembly. The second type is CustomPSSnapin, which enables developers to specify the
list of cmdlets and providers from either a single or multiple assemblies.

Through examples, we first show you how to create and use a standard PowerShell snap-in, and
then we explain when you need to use a custom PowerShell snap-in and how to implement
and use it.

INote, however, that PowerShell built-in snap-ins, such as Microsoft.PowerShell. Host, cannot be removed.

Chapter 2: Extending Windows PowerShell

Creating a Standard PowerShell Snap-in

You can extend Windows PowerShell by writing your own cmdlets and providers. Before you can
use those cmdlets and providers with PowerShell, however, you need to register them as PowerShell
snap-ins. Chapters 4 and 5 describe in detail how to write cmdlets and providers. This section explains
how to author and use your PowerShell snap-in.

Several steps are involved in developing and using a standard PowerShell snap-in. First, you need to
write some code for your snap-in and compile the code into a .NET assembly. Second, you need to reg-
ister the assembly as a snap-in with the PowerShell platform. Registering a snap-in only tells PowerShell
where a snap-in is. Before you can use the cmdlets or providers in your snap-in, you need to load

the snap-in into a PowerShell session. After a snap-in is loaded, you can use cmdlets or providers in
your snap-in just like other built-in native cmdlets and providers. To avoid the need to manually load
a snap-in every time you start Windows PowerShell, you can save your loaded snap-ins into a config-
uration file for use later, or you can explicitly load a snap-in from your PowerShell profile script. The
following sections explain in further detail each of the aforementioned steps.

Writing a PowerShell Snap-in

If you want to create a snap-in to register all the cmdlets and providers in a single assembly, then you
should create your own snap-in class, inheriting from the PSSnapIn class, and add a RunInstaller
attribute to the class, as illustrated in the following sample code:

// Save this to a file using filename: PSBook-2-1.cs

using System;

using System.Management.Automation;
using System.ComponentModel;
namespace PSBook.Chapter?2

{
[RunInstaller (true)]
public class PSBookChapter2MySnapIn : PSSnaplIn
{
// Name for the PowerShell snap-in.
public override string Name
{
get
{
return "Wiley.PSProfessional.Chapter2";
}
}

// Vendor information for the PowerShell snap-in.
public override string Vendor
{
get
{

return "Wiley";

}

14

Chapter 2: Extending Windows PowerShell

// Description of the PowerShell snap-in
public override string Description
{
get
{
return "This is a sample PowerShell snap-in";

}

// Code to implement cmdlet Write-Hi
[Cmdlet (VerbsCommunications.Write, "Hi")]
public class SayHi : Cmdlet
{
protected override void ProcessRecord()
{
WriteObject ("Hi, World!");
}

// Code to implement cmdlet Write-Hello
[Cmdlet (VerbsCommunications.Write, "Hello")]
public class SayHello : Cmdlet
{

protected override void ProcessRecord()

{

WriteObject ("Hello, World!");
}

System.Management .Automation comes with the PowerShell SDK, which can be downloaded from the
Web. System.Management .Automation is also available on all systems on which Windows PowerShell
is installed; on my machine, it is installed at C:\Windows\assembly\GAC_MSIL\System.Management.
Automation\1.0.0.0__31bf3856ad364e35. It inherits from System.ComponentModel, which comes with the
NET Framework, which is why it works with the installer in .NET through installutil.exe, a tool that
NET provides for installing or uninstalling managed applications on a computer.

For each snap-in, it is required to add a public Name property. At snap-in registration time, a Registry key
is created using the snap-in name as a key name. The snap-in name is also used to add or remove the
snap-in. To avoid potential name collision, we recommend using the following format to specify snap-in
names: < Company > . < Product > . < Component > . For example, the built-in PowerShell snap-ins are
named as follows:

PS E:\PSbook\CodeSample> get-pssnapin | format-list Name
Name : Microsoft.PowerShell.Core

Name : Microsoft.PowerShell.Host

Name : Microsoft.PowerShell.Management

15

Chapter 2: Extending Windows PowerShell

16

Name : Microsoft.PowerShell.Security
Name : Microsoft.PowerShell.Utility

The other required public property is Vendor. In the preceding example, the vendor is wiley. Optionally,
you can add a public Description property and other properties.

The preceding example also included code for two cmdlets: Write-Hi and Write-Hello. These are included
for illustration purposes. For more information on how to write cmdlets, please see Chapter 4. For this
simple example, all code is put in a single .cs file because it is very simple. In practice, you will likely use
a separate file for your snap-in class and other cmdlets and provider classes.

Compile the sample code from Visual Studio or use the following command-line option to create an
assembly PSBook-2-1.d11:

csc /target:library /reference:.\System.Management.Automation.dll PSBook-2-1.cs

With that, you have created your first PowerShell snap-in. Note that you need to have the NET Frame-
work installed in order for this to work. Both Csc.exe and installutil.exe come with the NET
Framework. Csc.exe is a C# compiler. I have the .NET Framework 2.0 installed on my 32-bit machine,
and csc.exe and installutil.exe can be found at the following location:

C:\Windows\Microsoft .NET\Framework\v2.0.50727\csc.exe
C:\Windows\Microsoft .NET\Framework\v2.0.50727\installutil.exe

On a 64-bit operating system, you can find them at this location:

C:\Windows\Microsoft.NET\Framework64\v2.0.50727\csc.exe
C:\Windows\Microsoft .NET\Framework64\v2.0.50727\installutil.exe

The path to csc. exe on your machine could be different depending on what version of the .NET Frame-
work you install and how your system is configured. If it is not there and you have the .NET Framework
installed, you can use the following PowerShell command to find the path:

Get-ChildItem -Recurse -path ${env:systemroot} -Include csc.exe

In any case, make sure the locations of csc.exe and installutil.exe are included in your path. In
addition, you may need to adjust the relative path to System.Management .Automation.dll if it is not in
the same folder as the C# files.

In order to use a snap-in, you must register it with PowerShell first. That is described in the next
section.

Chapter 2: Extending Windows PowerShell

Registering Your PowerShell Snap-in

To register a PowerShell snap-in like the one shown in the preceding section, you can use install
util.exe. InstallUtil.exe comes with the NET Framework. You can use the PowerShell command
line mentioned earlier to find the path:

Get-ChildItem -Recurse -path ${env:systemroot} -Include installutil.exe

You must have administrator privileges in order to run installutil.exe. On Windows Vista, you can
right-click on the Windows PowerShell icon and select Run as Administrator. Here is the command to
register the preceding snap-in, assuming installutil.exe is in your path:

E:\PSbook\CodeSample>installutil PSBook-2-1.d11
Microsoft (R) .NET Framework Installation utility Version 2.0.50727.312
Copyright (c) Microsoft Corporation. All rights reserved.

Running a transacted installation.

Beginning the Install phase of the installation.
See the contents of the log file for the E:\PSbook\CodeSample\PSBook-2-1.d11
assembly's progress.
The file is located at E:\PSbook\CodeSample\PSBook-2-1.InstallLog.
Installing assembly 'E:\PSbook\CodeSample\PSBook-2-1.d11".
Affected parameters are:
logtoconsole =
assemblypath = E:\PSbook\CodeSample\PSBook-2-1.d11
logfile = E:\PSbook\CodeSample\PSBook-2-1.InstallLog

The Install phase completed successfully, and the Commit phase is beginning.
See the contents of the log file for the E:\PSbook\CodeSample\PSBook-2-1.d11
assembly's progress.
The file is located at E:\PSbook\CodeSample\PSBook-2-1.InstallLog.
Committing assembly 'E:\PSbook\CodeSample\PSBook-2-1.d11"'.
Affected parameters are:
logtoconsole =
assemblypath = E:\PSbook\CodeSample\PSBook-2-1.d1l1l
logfile = E:\PSbook\CodeSample\PSBook-2-1.InstallLog

The Commit phase completed successfully.
The transacted install has completed.

Depending on the information you implement for the snap-in installer, the following registry information
may be created when you register a snap-in:

O A Registry key with SnapinName, which was defined in the PSSnapIn class, will be created under
HKLM\Software\Microsoft\PowerShell\1\PowerShellSnapIns.

0 A set of values may be created under this SnapinName key.

17

Chapter 2: Extending Windows PowerShell

18

The following table lists the possible value names, including data types, whether it is optional or required,
and a description of each value.

Name Type Optional or Description
Required

Application- REG_SZ Required Base directory used to load files needed by the

Base PSSnapln such as type or format files

Assembly- REG_SZ Required Strong name of PSSnaplIn assembly

Name

Module- REG_SZ Required Path to assembly if the PSSnapIn assembly is not

Name stored in GAC

PowerShell- REG_SZ Required Version of PowerShell used by this PSSnapIn

Version

Types REG_MULTI_SZ Optional Path of files, which contains type information for
this PSSnapln. It can be an absolute or relative
path. A relative path is relative to the
ApplicationBase directory.

Formats REG_MULTI_SZ Optional Path of files, which contains type information for
this PSSnapln. It can be an absolute or relative
path. A relative path is relative to the
ApplicationBase directory.

Description REG_SZ Optional Non-localized string describing the PSSnapIn. If
this information is not provided, an empty string
is used as a description of the PSSnaplIn.

Description- REG_SZ Optional Resource pointer to localized PSSnapIn

Indirect description. This should be in the following
format: ResourceBaseName, ResourceId. If this
information is not provided, a language-neutral
description string is used as a description for the
PSSnapln.

Vendor REG_SZ Optional Vendor name for the PSSnapIn. If this
information is not provided, an empty string is
used as vendor name for the PSSnapIn.

Vendor- REG_SZ Optional Resource pointer to the localized PSSnapln

Indirect vendor name. This should be in the following
format: ResourceBaseName, ResourceId. If this
information is not provided, a language-neutral
vendor string is used as vendor of the PSSnapIn.

Version REG_SZ Optional Version for the PSSnapIn

CustomPSS- REG_SZ Optional Name of the class that contains Custom

napInType PSSnapIn information

Chapter 2: Extending Windows PowerShell

When a snap-in is registered, the DLLs referenced are loaded when used, so make sure you do not
register DLLs from a temporary directory; otherwise, when the DLLs are deleted, PowerShell will fail to
find and load the DLLs for the snap-in later.

Listing Available PowerShell Snap-ins

You can verify whether a snap-in is registered with Windows PowerShell by listing all the registered
PowerShell snap-ins. This can be done using the Get-PSSnapIn cmdlet with the -registered parameter.
The snap-in registered should be shown in the list:

PS E:\PSbook\CodeSample> get-pssnapin -registered
Name : Wiley.PSProfessional.Chapter2
PSVersion : 1.0

Description : This is a sample PowerShell snap-in

Loading a PowerShell Snap-in to a Running Shell

Installutil.exe only puts information about a snap-in into the Windows Registry. In order to use
cmdlets and providers implemented in a snap-in, you need to load the snap-in into PowerShell, which is
done through another PowerShell cmdlet, Add-PSSnapIn, as shown below:

PS E:\PSbook\CodeSample> add-pssnapin PSBook-Chapter2-SnapIn

You can verify that the snap-in is loaded using the cmdlet Get-PSSnapIn without the parameter
-registered:

PS E:\PSbook\CodeSample> get-pssnapin

Name : Wiley.PSProfessional.Chapter2
PSVersion : 1.0

Description : This is a sample PowerShell snap-in

You also can verify that the snap-in assembly is loaded with the following;:

PS E:\PSbook\CodeSample> (get-process -id $pid).modules | where-object {$_.filename
-like "*PSBook*"}
Size(K) ModuleName FileName

32 PSBook-2-1.d11 E:\PSbook\CodeSample\PSBook-2-1.d11l

Just like built-in cmdlets, you can use get-command to list them. In Figure 2-1, a wild char is used to
list all the cmdlets with the verb “write” and any noun starting with the letter “h”. As expected, the
two cmdlets we just implemented in the snap-in Wwrite-Hello and Write-Hi are listed, along with the
built-in cmdlet write-Host. Then we invoked the cmdlets write-Hi and Write-Hello, just as we would
invoke a built-in cmdlet, and they worked as expected. In fact, as you type the cmdlet name, you can use
tab-completion. Give that a try and see for yourself.

19

Chapter 2: Extending Windows PowerShell

® Windows PowerShell
et—command Write—h=

Hame

Write-Hello [-Uerhosel [-Di
Heite-Hi Weite-Hi [-Verboszel [-Debu =
Urite llost Write llost [[Object] {Objec...

Write-Hello

Figure 2-1

Removing a PowerShell Snap-in from a Running Shell
To remove a PSSnapIn from Windows PowerShell, use the Remove-PSSnapin cmdlet:
PS E:\PSbook\CodeSample> Remove-PSSnapin PSBook-Chapter2-SnapIn -passthru

Name : Wiley.PSProfessional.Chapter2
PSVersion : 1.0
Description : This is a sample PowerShell snap-in

Removing a snap-in disables the shell from further using any cmdlets and providers in the snap-in.
After that, you will not see the snap-in listed when running get-pssnapin, nor will you see cmdlets
or providers listed. However, remove-pssnapin does not unload the snap-in assembly from the shell
process. You can verify that with the following

PS E:\PSbook\CodeSample> (get-process -id $pid).modules | where-object {$_.filename
-like "*PSBook*"}
Size(K) ModuleName FileName

32 PSBook-2-1.d11 E:\PSbook\CodeSample\PSBook-2-1.d11l

As shown in the preceding example, PSBook-2-1.d11 is still listed as a module in the current shell. You
need to close the PowerShell session to unload the snap-in assembly. Otherwise, the assembly is locked
and you will not be able to recompile your code after you make changes.

Unregistering a PowerShell Snap-in

To unregister a snap-in from the Registry, run installutil.exe with -u parameter as shown in the
following example (assuming that installutil.exe is in your path):

PS E:\PSbook\CodeSample> installutil -u PSBook-2-1.d11
Microsoft (R) .NET Framework Installation utility Version 2.0.50727.312
Copyright (c) Microsoft Corporation. All rights reserved.

The uninstall is beginning.

See the contents of the 1log file for the E:\PSbook\CodeSample\PSBook-2-1.d11
assembly's progress.

20

Chapter 2: Extending Windows PowerShell

The file is located at E:\PSbook\CodeSample\PSBook-2-1.InstallLog.
Uninstalling assembly 'E:\PSbook\CodeSample\PSBook-2-1.d11".
Affected parameters are:

logtoconsole =

assemblypath = E:\PSbook\CodeSample\PSBook-2-1.d11l

logfile = E:\PSbook\CodeSample\PSBook-2-1.InstallLog

The uninstall has completed.

You can verify that by running the following command:

PS E:\PSbook\CodeSample> get-pssnapin -registered

You should no longer see the snap-in Wiley.PSProfessional.Chapter2 listed.

In order to unregister a snap-in, you must run the command as Administrator.

Registering a PowerShell Snap-in without Implementing
a Snap-in Clas

It is possible to register a PSSnapin without implementing a class inherited from PSSnapIn. For example,
registering pssnapin typically happens during setup; if you do not want to invoke any managed code
during setup, you may choose to register a PSSnapin by directly creating the Registry key and values as
mentioned earlier. To demonstrate, try the following steps:

1. Make sure that the snap-in Wiley.PSProfessional.Chapter2 has been unregistered as men-
tioned above.

2. Save the following text to file PSBook-Chapter2-PSSnapin.reg:?
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1l\PowerShellSnapins\
Wiley.PSProfessional.Chapter2]

"PowerShellVersion"="1.0"

"Vendor"="Wiley"

"Description"="This is a sample PowerShell snap-in"

"Version"="0.0.0.0"

"ApplicationBase"="E:\\PSbook\\CodeSample"

"AssemblyName"="PSBook-2-1, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null"
"ModuleName"="E:\\PSbook\\CodeSample\\PSBook-2-1.d11"

3. Double-click the file to add the information to the Registry.

4. Run the command get-pssnapin —registered. You should see that the Wiley.PSProfes-
sional.Chapter2 snap-in is included in the list.

2You can use C++ code, Windows Installer XML, or whatever works best for you to add those Registry values.

21

Chapter 2: Extending Windows PowerShell

5. Run the command add-pssnapin Wiley.PSProfessional.Chapter2.

6. Run the command get-pssnapin. The Wiley.PSProfessional.Chapter2 snap-in should be
included in the loaded snap-in list.

Saving Snap-in Configuration

As you have just seen, you need to use add-pssnapin to load the assembly of a snap-in into PowerShell

before you can use the cmdlets, providers, and so on, in the snap-in. To avoid typing add-pssnapin com-
mands for each snap-in after you start PowerShell, you can save the loaded snap-ins into a configuration
file for use later. This can be done using the Export-Console cmdlet, as shown in the following example:

PS E:\PSbook\CodeSample\PSBook> export-console MyConsole

After running the preceding command, the file MyConsole.pscl is created in the folder. MyConsole.pscl
is an XML file that lists all the currently loaded snap-ins. The following code shows a sample configura-
tion XML file:

<?xml version="1.0" encoding="utf-8"?>
<PSConsoleFile ConsoleSchemaVersion="1.0">
<PSVersion>1.0</PSVersion>
<PSSnapIns>
<PSSnapIn Name="Wiley.PSProfessional.Chapter2" />
</PSSnapIns>
</PSConsoleFile>

Starting PowerShell with a Saved Snap-in Configuration

To use the console file created earlier, you can start Powershell.exe with the -psconsolefile option, as
shown here:

E:\PSbook\CodeSample\PSBook>powershell -psconsolefile MyConsole.pscl

From the shell, using the following command, you can verify that the configuration files are used to
create the shell:

PS E:\PSbook\CodeSample\PSBook> Sconsolefilename
E:\PSbook\CodeSample\PSBook\MyConsole.pscl

$consolefilename is a read-only variable containing the configuration file name used for the Power-
Shell session. You can also verify that the snap-ins specified in the configuration file (is this case, the
Wiley.PSProfessional.Chapter2 snap-in) are actually loaded using the get-pssnapin cmdlet:

PS E:\PSbook\CodeSample\PSBook> get-pssnapin
Name : Wiley.PSProfessional.Chapter2

PSVersion : 1.0
Description : This is a sample PowerShell snap-in

22

Chapter 2: Extending Windows PowerShell

Note that configuration files created by Export-Console are for use on the same machine where the files
are created. If you want to use the same configuration file for other machines, you need to ensure that the
PSSnapins specified in the configuration file have been registered on those machines.

Using a Profile to Save a Snap-in Configuration

Another way to avoid manually typing add-pssnapin commands in a shell every time you start Power-
Shell is to add add-pssnapin cmdlets to the PowerShell profile. There are four PowerShell profiles from
which you can choose to customize Windows PowerShell, depending on where/when you would like
to effect the changes. For more details on customizing PowerShell using profiles, see the section “Under-
standing the Profiles” inside Getting Started.rtf, which was installed with Windows PowerShell
under the $pshome folder.

Creating a Custom PowerShell Snap-in

You need to derive your snap-in class from the CustomPSSnapIn class if you want to do any of the
following:

Q Register a specific list of cmdlets and providers in an assembly

O Register cmdlets and providers from more than one assembly

0 Register specific types and formats

The following section describes how to create and use a custom pssnapin.

Writing a Custom PowerShell Snap-in

Earlier in this chapter, you learned how to write a standard pssnapin. This section extends that example
by showing you how to create a custom pssnapin. Here, you will create a custom pssnapin in such a
way that it only exposes one of the cmdlets implemented in the earlier example, and rename the cmdlet
from Write-Hello to Say-Hello.

The following code example illustrates how to do that (the filename is psbook-2-2.cs):

using System;
using System.Diagnostics;

using System.Management.Automation; //Windows PowerShell namespace

using System.ComponentModel;

using System.Collections.ObjectModel; // For Collection

using System.Management.Automation.Runspaces; // Needed for CmdletConfiguration-
Entry

[RunInstaller (true)]

public class PSBookChapter2MyCustomeSnapIn: CustomPSSnapIn

{
// Specify the cmdlets that belong to this custom PowerShell snap-in.
private Collection<CmdletConfigurationEntry> cmdlets;

23

Chapter 2: Extending Windows PowerShell

public override Collection<CmdletConfigurationEntry> Cmdlets
{
get
{
if (cmdlets == null)
{
cmdlets = new Collection<CmdletConfigurationEntry>();
cmdlets.Add (
new CmdletConfigurationEntry (

"Say-Hello ", // cmdlet name
typeof (SayHello), // cmdlet class type
null // help filename for the cmdlet

)
}

return cmdlets;

public override string Name
{
get { return "Wiley.PSProfessional.Chapter2-Custom"; }

public override string Vendor
{
get { return "Wiley"; }

public override string Description
{
get { return " This is a sample PowerShell custom snap-in"; }

// Specify the providers that belong to this custom PowerShell snap-in.
private Collection<ProviderConfigurationEntry> providers;
public override Collection<ProviderConfigurationEntry> Providers

{
get {
if (providers == null)
{
providers = new Collection< ProviderConfigurationEntry > ();
return providers;
}

// Specify the Types that belong to this custom PowerShell snap-in.
private Collection< TypeConfigurationEntry > types;
public override Collection< TypeConfigurationEntry > Types
{
get
{

24

Chapter 2: Extending Windows PowerShell

if (types == null)
{
types = new Collection< TypeConfigurationEntry >();
return types;

}

// Specify the Format that belong to this custom PowerShell snap-in.
private Collection< FormatConfigurationEntry > formats;
public override Collection< FormatConfigurationEntry > Formats
{
get {
if (formats == null)
{
formats = new Collection< FormatConfigurationEntry > ();
return formats;
}
}
}
}

You can redefine the name for cmdlets as you wish. In the preceding code, we renamed the cmdlet
write-hello to Say-hello. Note that the cmdlet name in the original assembly will not be visible. There-
fore, if the same cmdlet name is implemented in two different assemblies with different behaviors, then
you can use a custom snap-in to give a different name to the cmdlet in each assembly, to avoid name
conflicts.

Only those cmdlets that are included in the collection returned by the property cmdlets will be visible in
the shell after the snap-in is loaded.

In the preceding code, only skeleton code for providers, types, and formats are included, to illustrate how
to add them in a custom snap-in. For details on how to write providers, see Chapter 5. For information
about types and format, see Chapter 8.

Using a Custom PowerShell Snap-in

Although writing a custom PowerShell snap-in is a little different from writing a standard PowerShell
snap-in, using a custom PowerShell snap-in is the same. Just make sure that the assemblies referenced
by your custom PowerShell snap-in are in the same folder as your custom PowerShell snap-in assembly.
Here are the steps to follow:

1. Compile the custom snap-in assembly use the following command:

Csc /target:library /reference:psbook-2-1.d11
-reference:.\system.management.automation.dll psbook-2-2.cs

The preceding command assumes that csc.exe is in your path and that both
psbook-2-1.d11 and system.management .automation.dll are in the same folder as the
psbook-2-2.cs file

25

Chapter 2: Extending Windows PowerShell

2.

6.

Register the snap-in using installutil.exe. Note that for a custom snap-in, a special Reg-
istry value named CustomPSSnapInType is created. In addition, the snap-in class type,
PSBook . PSBookChapter2MySnapIn in this case, is used as value data:

E:\PSbook\CodeSample\PSBook>InstallUtil PSBook-2-2.d11

Verify that the snap-in has been registered successfully:

E:\PSbook\CodeSample\PSBook>get-pssnapin -registered
Name : Wiley.PSProfessional.Chapter2-Custom
PSVersion : 1.0

Description : This is a sample PowerShell custom snap-in.

Use add-pssnapin to load the snap-in. If separate assemblies are used by the custom snap-in,
make sure those assemblies exist either in the same folders as the snap-in assembly or in the
GAC.

PS E:\PSbook\CodeSample\PSBook>add-pssnapin

Wiley.PSProfessional.Chapter2-Custom

Now make sure the standard snap-in registered earlier is not loaded, so you only see cmdlets
registered through the custom snap-in. If the standard snap-in is loaded, use the following
command to remove it from the current session:

Remove-PsSnapin PSBook-Chapter2-SnapIn

As you can see in Figure 2-2, you can only use the new cmdlet name as defined in the custom
snap-in. The original cmdlet Write-Hello is not accessible through the custom snap-in.

® Windows PowerShell HEE
s B

Say-Hello [-Verhosel [-Debug...

Figure 2-2

Just as you can with a standard PowerShell snap-in, you can uninstall a custom PowerShell
snap-in using installutil -u, and save snap-in configurations to a configuration file using
export-console.

Earlier in this chapter, you learned that if you want to register all the cmdlets and providers in an
assembly, you can do so without implementing any snap-in code by creating registry information.

26

Chapter 2: Extending Windows PowerShell

However, if you want to register a subset of cmdlets or providers from one or more assemblies, you
have to implement your custom snap-in, as described in this section. This is because Powershell doesn’t
save cmdlets or providers mapped in the registry. Instead, it creates the mapping on-the-fly by calling
the public properties, such as cmdlets and providers, when a custom snap-in is loaded.

Summary

This chapter introduced you to the PSSnapin and CustomPSSnapin classes and described the differences
between them. You also learned how to write and use both types of PowerShell snap-ins. We demon-
strated what Registry information you need to create if you do not want to implement PSSnapin classes
for registering standard PowerShell snap-ins.

Now that you know how to register your own cmdlets, providers, types, and so on, after introducing
extended type systems in the next chapter, we will explore in greater detail how to write cmdlets and
providers.

You may have noticed that this chapter didn’t cover using parameters, taking input from the pipeline,
and creating a help file. Those topics are covered later, in Chapter 4.

27

Understanding the
Extended Type System

All languages use a type system to define values and expressions into types. PowerShell is built on
top of the .NET Framework and it uses the NET Framework as its type system. However, the NET
Framework is designed for use with compiled programming languages and is targeted toward
developers; it is neither designed for the scripting environment nor suitable for use by scripters.
To solve this problem, Windows PowerShell extends the NET Framework to form an Extended
Type System (ETS). The ETS forms the core of the Windows PowerShell language’s type system.
Specifically, the ETS provides psobject, which is the object created whenever new objects or vari-
ables are created in Windows PowerShell. Psobject provides the necessary access to the Windows
PowerShell type system.

For scripters, Psobject provides a uniform interface to the different types of objects that can be
created in .NET, COM, WMI, ADSI, and so on. For developers, it provides a mechanism to
manipulate the objects and structured data using same syntax as CLR class. In addition to the
aforementioned functionality, the ETS provides the capability to extend original objects so that they
can better serve in the scripting environment. It provides the foundation of a malleable type system,
enabling the script developer to define types dynamically and so that the rest of the PowerShell
system knows how to work with that object.

This chapter describes the different components of the Windows PowerShell type system. First
we start with Psobject, the core of the system. Then we will look at other features, including type
extensions, type adapters, type conversion, and how a scripter or a developer can use these different
features to dynamically manage an object. Finally, we end the chapter by looking at different built-in

type adapters.

PSObject

Every object has properties that hold data, and methods that can be called to manipulate the data.
Imagine the capability to create objects of any type, independent of the type of object created; and
imagine that you could access it the same way. PSObject provides this capability. In this section we

Chapter 3: Understanding the Extended Type System

begin our exploration of ETS by learning about PSobject. PSObject is the basis of all object access from
the Windows PowerShell’s scripting language, and it provides a standard abstraction for the .NET devel-
oper (see Figure 3-1).

class PSObject /

Formattable
IComparable
PSObject

+ AdaptedMemberSetName: string = “PSAdapted”
+ BaseObjectMemberSetName: string = “PSBase”
ExtendedMemberSetName: string = “PSExtended”

o

AsPSObject(object) : PSObject

CompareTo(object) : int

Copy() : PSObject

Equals(object) : bool

GetHashCode() : int

PSObject()

PSObject(object)

ToString() : string

ToString(string, IFormatProvider) : string

«property»

BaseObiject() : object

ImmediateBaseObject() : object

Members() : PSMemberInfoCollection<PSMemberinfo>
Methods() : PSMemberlnfoCollection<PSMethodInfo>
Properties() : PSMemberinfoCollection<PSPropertylnfo>
TypeNames() : Collection<string>

4+ o+ o+ o+

+ 4+ 4+ o+

Figure 3-1: The PSObject class

PSObject consists of the following members:

(]

PSObject (object)
PSObject ()

AsPSObject (object)
ImmediateBaseObject ()
BaseObject ()
Members ()

Methods ()

Properties ()

O 000U o0uUuo

TypeNames ()

Constructing a PSObject

There are three different ways to create a PSObject: PSObject (object), PSObject (), and
PSObject.AsPSObject (someobject).

30

Chapter 3: Understanding the Extended Type System

PSObject(Object)

The first method to create a PSObject is to create the object that needs to be wrapped and then call the
PSObject constructor that takes the object as its parameter. This constructor creates the pPSobject, which

exposes the underlying object’s methods and properties:

c#
namespace PSBook.Chapter3
{

class Samplel

{
static void Main(string[] args)

{
System.DateTime date = new System.DateTime (2007, 12, 25);

PSObject psobject = new PSObject (date);

PS

Sdate = new-object System.datetime 2007,12,25
Spsobject = new-object system.management.automation.psobject $date

PSObject()

The second method of creating a Psobject is to call the constructor with no parameters. This creates a
PSObject with a PSCustomObject as the object being wrapped, as shown in Figure 3-2.

class PSCustomObiject /

PSCustomObject

~ Selflnstance: PSCustomObject = new PSCustomObject() ~Selflnstance

- PSCustomObject()
+ ToString() : string

Figure 3-2: A PScustomObject as the object being wrapped

PSCustomObject is a simple object that doesn’t do much. It is used as a placeholder object to signify that
this PSObject doesn’t wrap any object. You might be wondering why you would create a PSObject with
no object wrapped. The reason is because PowerShell provides the capability to define your own methods
and properties, called extended members (described in later section), that can be added to the psobject.
This enables Psobjects created using this method to act as very powerful type-name property bags.

c#
namespace PSBook.Chapter3
{

class Sample2

31

Chapter 3: Understanding the Extended Type System

static void Main(string[] args)

{
PSObject psobject = new PSObject();

PS

Spsobject = new-object system.management.automation.psobject

PSObject.AsPSObject(someObject)

The third method for creating objects is to use the static method AsPSObject to create PSObjects. This is
the most frequently used method to create PSobjects internally by Windows PowerShell. This method
checks the given object to determine whether it already is a PSObject. If it is, then it just returns that
PSObject; otherwise, it returns a PSObject by calling the method pPSobject (someobject), described
earlier.

c#
namespace PSBook.Chapter3
{

class Sample3

{

static void Main(string[] args)
{
// Create a CLR datetime object
System.DateTime date = new DateTime (2007, 12, 25);
// Use it to create a PSObject
PSObject psobject = new PSObject (date) ;

// Create a PSObject using AsPSobject method

//This will return the existing psobject as result
PSObject psobject2 = PSObject.AsPSObject (psobject) ;

//This will create new PSObject that wraps the date object

//and return that object as result
PSObject psobject3 = PSObject.AsPSObject (date) ;

PS

#create CLR Object
Sdate = new-object system.datetime 2007,12,25

#Create a PSObject using CLR object
Spsobject = new-object system.management.automation.psobject S$date

#Create a PSObject using statis AsPSObject Method

32

Chapter 3: Understanding the Extended Type System

#This will return the passed psobject as result without any modification
Spsobjectl = [System.Management.Automation.PSObject]::AsPSObject (Spsobject)

#This will create a new PSObject and return it as result
Spsobject2 = [System.Management.Automation.PSObject]::AsPSObject ($date)

ImmediateBaseObject and BaseObject

After the PSObject is created, the developer might occasionally need to access the object being wrapped
by the Psobject. PSObject provides two properties to do this:

0 BaseObject: This property returns the object being wrapped by the pSobject. If the immediate
object being wrapped is another PSObject, then this property returns its base object. This con-
tinues until it finds an object that is not a PSObject. Using this property, you are guaranteed to
get the CLR object that is being wrapped.

0O ImmediateBaseObject: This property returns the object being currently wrapped by the PSOb-
ject. If the current object being wrapped is a PSObject, then it will return that object. This prop-
erty does not attempt to go beyond the first-level object. You are guaranteed to get the immediate
object being wrapped by accessing this property.

Let’s look at the code sample that shows how these two properties can be accessed. As before, the first
code sample is in C#, and the second code sample is in PowerShell script:

c#

namespace PSBook.Chapter3
{
class Sampled
{
static void Main(string[] args)
{
// Create a CLR datetime object
System.DateTime date = new DateTime (2007, 12, 25);
// Use it to create a PSObject
PSObject psobject = new PSObject (date);

// Create a PSObject using the PS object
PSObject psobject2 = new PSObject (psobject);

//This will return the psobject that we wrapped.
Object obj = psobject2.ImmediateBaseObject;

//The next line will output //System.Management.Automation.PSObject
Console.WriteLine (obj.GetType () .FullName) ;

//This will return the DateTime object
//that we originally wrapped in the PSObject

obj = psobject2.BaseObject;

//The next line will output System.DateTime

Console.WriteLine (obj.GetType () .FullName) ;

33

Chapter 3: Understanding the Extended Type System

PS
#create CLR Object
Sdate = new-object system.datetime 2007,12,25

#Create a PSObject using CLR object
Spsobject = new-object system.management.automation.psobject S$date

#Create a PSObject using the created PSObject
Spsobject2 = new-object system.management.automation.psobject S$psobject

#The next line will return the object we just wrapped

Sobj = $psobject2.psobject.ImmediateBaseObject

#Next line will output system.management.automation.psobject
Sobj.GetType () .FullName

#The next line will return the DateTime object we originally wrappe
#in the PSObject

Sobj = $psobject2.psobject.BaseObject

#Next line will output System.DateTime

Sobj.GetType () .FullName

Members

Now that you know how to construct a PSobject, let’s see how PSObject can be used to access the
different object types that it can encapsulate. Regardless of the type of object wrapped, all members of the
underlying object can be accessed through the pPsobject. These members are available from a PSObject
as shown in the preceding PSobject definition. They are available using three different collections:

O Members: Gets the collection of members contained in this PSObject.
0 Methods: Gets the collection of methods contained in this PSobject.

0 Properties: Gets the collection of properties contained in this PSObject.

All member types derive from pSMemberInfo, which is summarized in Figure 3-3, and described in the
following list:

O Name is the name of the member itself.

Q IsInstance indicates whether this member is an InstanceMember or not. If the type is defined
only on this instance of the Psobject, then it will be true.

Q valueis the value returned from the particular member. Each member type defines how it deals
with value.

0 TypeNameOfValue is the TypeName of the value returned by value.

Each of the Member, Properties, and Methods collections derive from pSMemberInfoCollection. We will
look into the details of this collection before moving on to types of members.

34

Chapter 3: Understanding the Extended Type System

class PSMemberinfo /

PSMemberinfo

+ Copy() : PSMemberinfo

PSMemberinfo()

«property»

+ IsInstance() : bool

MemberType() : PSMemberTypes
Name() : string
TypeNameOfValue() : string

+
+
+
+ Value() : object

Figure 3-3: PSMemberInfo-derived member types

PSMemberinfoCollection

All member collections — Members, Properties, and Methods — are returned as PSMemberInfo-
Collection. Itis a collection of objects that are all derived from pSMemberInfo. This collection allows for
retrieving, adding, and removing members.

PSMemberInfoCollection is defined in Figure 3-4, and described in the following list:

class MemberCollection /

IEnumerable
PSMemberinfoCollection

Add(T) : void

GetEnumerator() : IEnumerator<T>

Match(string) : ReadOnlyPSMemberinfoCollection<T>

Match(string, PSMemberTypes) : ReadOnlyPSMemberinfoCollection<T>
PSMemberinfoCollection()

Remove(string) : void

+ o+ o+ o+ o+

«indexer»
+ this(string) : T

Figure 3-4: PSMemberInfoCollection

0 Constructor takes no arguments and is protected.

0 add allows adding members to this collection. It will clone the incoming PsMemberInfo. It also
prevents the addition of any members with the same names as intrinsic members.

a Remove removes the named member from this collection.

35

Chapter 3: Understanding the Extended Type System

a this is an indexer on this collection. It takes the name of the member. If the member does not
exist, Null is returned. This does not handle any wildcard characters — it is a straight case-
insensitive match.

O Matchlooks up a member or collection of members based on the name parameter. It handles
wildcard characters; and because this means it can return > 1 match, it returns a collection.
This collection is read-only (see the following section), as adding and removing from the
returned collection will not modify the collection in which the match occurred.

0 Matchhas an overload that allows a match to be performed only against the specified
PSMemberTypes.

0 GetEnumerator implements the interface necessary to make this class IEnumerable. This allows
a foreach loop to be performed using this collection. It returns an IEnumerator of the collection
members.

Sometimes you will want to return a collection that can be read but not modified. ReadonlyPsMember-
InfoCollection, which you will learn about next, is used for this purpose.

ReadOnlyPSMemberinfoCollection

ReadOnlyPSMemberInfoCollectionis a collection of members (derived from PSMemberInfo). It is present
on pSMemberInfoCollection in order to facilitate the retrieval and counting of members.

ReadOnlyPSMemberInfoCollection is defined in Figure 3-5 and described in the following list:

class MemberCollection /

IEnumerable
ReadOnlyPSMemberinfoCollection

+ GetEnumerator() : IEnumerator<T>

+ Match(string) : ReadOnlyPSMemberinfoCollection<T>

+ Match(string, PSMemberTypes) : ReadOnlyPSMemberinfoCollection<T>
«property»

+ Count() : int

«indexer»

+ this(string) : T

+ this(int) : T

Figure 3-5: ReadOnlyPSMemberInfoCollection

a this (string)is an indexer on this collection. It takes the name of the member to locate. If the
member does not exist, then Null is returned. This does not handle any wildcard characters — it
is a straight case-insensitive match.

O this(int)is an indexer on this collection. It takes an integer that is the position in the collection
of the desired member. This allows the use of a for statement and associated indexer.

0 Match looks up a member or collection of members based on the name parameter. It handles
wildcard characters; and because this means it can return > 1 match, it returns a collection. This

36

Chapter 3: Understanding the Extended Type System

collection is read-only, as adding and removing from the returned collection will not modify
the collection in which the match occurred.

0 Matchhas an overload that allows a match to be performed only against the specified ps-
MemberTypes.

a Count indicates the number of elements in this collection.

0 GetEnumerator implements the interface necessary to make this class IEnumerable. This allows
a foreach loop to be performed using this collection. It returns an IEnumerator of the collection
members.

Base, Adapted, and Extended Members

Each of the members in the PsObject can be classified into one of three types based on the source of the
member. This is an important concept that differentiates Psobject from other objects with which you
may have worked.

O Base members: When a new PSObject is constructed using an object, then the members of that
object are made available to the script developer and CLR developer via the Psobject. These
members are BaseObject members.

QO Adapted members: When the object being wrapped is a meta-object, one that contains data in a
generic fashion, its properties actually describe the contained data. It is the contained data that is
interesting, not the description of the contained data. ETS solves this problem by introducing the
notion of adapters, which modify the underlying .NET object to have the expected default
semantics. A PSObject adapter is a way to surface a specific view of a BaseObject. For example,
the ADO DataRow object has a Table property that has a Column property. If the object being
passed down the pipeline is an ADO DataRow object, then the script developer probably
wants to get directly at the contents of that data, not the description of the data. ETS enables a
developer to directly access that data just like any other member. ETS automatically adapts a
number of .NET meta-objects. Members that are exposed through an adapter are called adapted
members of the object.

O Extended members: In addition to the base members and adapted members, PSObject allows
an object to be extended with additional information. This additional information can be a new
property or method that provides additional functionality in the scripting environment. For
example, all the core cmdlets (e.g., get-content, set-content) take a path parameter; these
can be made to work against any object by adding a path member to different object types so
that they state their information in a common way, thereby enabling the cmdlets to work against
those object types. Additionally, when a PSObject has no BaseObject, it is being used by the
script developer to store information (essentially, it is used as a dynamically typed object), and
all its members are “extended.” All extended members may be defined on an instance (becoming
instance members) or based on a TypeName.

Types of Members

Windows PowerShell’s type system is so powerful that you can create a new property on an object
dynamically, specify an alias to an already existing property, and create a new property by supplying
a script block for getter/setter access. All these new properties are accessible in the same way as CLR
members through pPSObject’s properties/members. The enumerator shown in Figure 3-6 is available to
specify the different member types.

37

Chapter 3: Understanding the Extended Type System

class PSMemberTypes /

«enumeration»
PSMemberTypes

AliasProperty = 1
CodeProperty = 2

Property = 4

NoteProperty = 8
ScriptProperty = 16
PropertySet = 32

Method = 64

CodeMethod = 128
ScriptMethod = 256
ParameterizedProperty = 512
MemberSet = 1024
Properties = AliasProperty |...
Methods = CodeMethod | Me...
All = Properties | Me...

Figure 3-6: Specifying different member types with an
enumerator

Figure 3-7 illustrates the different member types of a PSObject in more detail.

class PSMembers /

PSMemberinfo

AN

PSMemberSet PSPropertySet PSMethodInfo

/ PSCodeMethod || | PSScriptMethod PSMethod PSParameterizedProperty|

PSAliasProperty | | PSCodeProperty PSProperty PSMemberSet:: "
PSNoteProperty RESEIAREY)

PSPropertyinfo

Figure 3-7: Member types of a PSObject

Properties

Properties are member types that can be treated as a property: Essentially, they can appear on the
left-hand side of an expression if they have implemented a set operation, they take no arguments, and
the get returns a value. PSMemberTypes . Properties includes the Property, NoteProperty, AliasProp-
erty, ScriptProperty, and CodeProperty member types.

38

Chapter 3: Understanding the Extended Type System

All properties derive from PSPropertyInfo, which is summarized in Figure 3-8.

class PSPropertyinfo /

PSMemberlinfo
PSPropertyinfo

PSPropertylnfo()
«property»

+ IsGettable() : bool
+ [sSettable() : bool

Figure 3-8: Property types of a PSObject

0 IsSettable indicates whether this member has an accessible set operation (i.e., can be used on
the LHS).

a IsGettable indicates whether this member has an accessible get operation (i.e., can be used on
the RHS).

The following sections describe pPSMembers that derive from PSPropertyInfo.

PSProperty

A PSproperty is one that is defined on the BaseObject or is made available through an adapter. It refers
to both CLR fields as well as CLR properties. It may be either a BaseObject member or an adapted
member. Figure 3-9 shows its definition, described here as follows:

class PSProperty /

PSPropertylnfo
PSProperty

+ Copy() : PSMemberinfo

+ ToString() : string

«property»

+ IsGettable() : bool

IsSettable() : bool

MemberType() : PSMemberTypes
TypeNameOfValue() : string
Value() : object

+ 4+ o+ o+

Figure 3-9: PSProperty

39

Chapter 3: Understanding the Extended Type System

Constructor does not exist on PSProperty because it exists solely on the BaseObject.

IsSettable is determined by inspecting the underlying BaseObject or adapted view and
determining whether a set operation is available.

IsGettable is determined by inspecting the underlying BaseObject or adapted view and
determining whether a get operation is available.

Value retrieves or sets the value on that property or field. If the get or set is called and the
operation is not available, then an ExtendedTypeSystemException (GetValueException Or
SetValueException) is thrown.

TypeNameOfValue is the TypeName of the object that will be returned from a get operation or the
TypeName needed as input for the set operation. In this case, the TypeName is the CLR
full name.

PSNoteProperty

40

A PSNoteProperty is a name-value pairing in a PSObject. An ExtendedMember, it is used to contain an
object in a parent PSObject. The NoteProperty retains the reference to the object to which it was set. It
provides the same functionality in script as a field does in the CLR.

The definition of a NoteProperty is shown in Figure 3-10.

class PSNoteProperty /

PSPropertylnfo
PSNoteProperty

+ Copy() : PSMemberinfo

+ PSNoteProperty(string, object)

+ ToString() : string

«property»

+ IsGettable() : bool

IsSettable() : bool

MemberType() : PSMemberTypes
TypeNameOfValue() : string
Value() : object

+ + 4+ +

Figure 3-10: NoteProperty

Constructor takes the name of the member to create and the value that will be stored in value.
Any object may be used for value.

IsSettableis True. NoteProperty does not have a readonly capability at this time.

IsGettableis True. NoteProperty has no notion of private or write-only at this time.

Chapter 3: Understanding the Extended Type System

Q value will retrieve or set the value of this Note.

a TypeNameOfValue is the TypeName of the object that will be returned from a get operation.

The following example adds a NoteProperty called Title, with an initial value of a string Professional
Windows PowerShell to the variable psobj, which is a PSObject. It then sets the Title to the string
Professional Windows PowerShell Programming:

PS C:\> Spsobj = new-object system.management.automation.psobject

PS C:\> add-member -InputObject $psobj -MemberType NoteProperty -Name Title -
Value "Professional Windows PowerShell"

PS C:\> S$psObj

Title

Professional Windows PowerShell

PS C:\> Spsobj.Title = "Professional Windows PowerShell Programming"
PS C:\> S$psobj
Title

Professional Windows PowerShell Programming
PS C:\>

PSScriptProperty

A PSScriptProperty is a “getter’”” or “setter’” defined in script. An extended member, it provides similar
functionality in a script to the property in the CLR.

The definition of a ScriptProperty is shown in Figure 3-11.

class PSScriptProperty /

PSPropertylnfo
PSScriptProperty

+ Copy() : PSMemberinfo

+ PSScriptProperty(string, ScriptBlock)
+ PSScriptProperty(string, ScriptBlock, ScriptBlock)
+ ToString() : string

«property»

GetterScript() : ScriptBlock
IsGettable() : bool

IsSettable() : bool

MemberType() : PSMemberTypes
SetterScript() : ScriptBlock
TypeNameOfValue() : string

Value() : object

+ + + + + + o+

Figure 3-11: ScriptProperty

41

Chapter 3: Understanding the Extended Type System

42

O constructor takes the name of the member to create and the script blocks for get and/or set.
At least one script block must be present. It stores these script blocks in the respective mem-
bers GetterScript and SetterScript

Q IsSettableis Trueif SetterScript is not Null; otherwise, it is False

(]

IsGettableis True if GetterScript is not Null; otherwise, it is False

O value will call the appropriate script block to perform the action. A get invokes the Getter-
Script and returns the value provided. A set invokes the SetterScript, passing it the object
provided to it as $this.args.

If a ScriptProperty is not associated with a PSObject, then $this evaluates+ fo Null.

a TypeNameOfValue is the TypeName of the object that will be returned from a get operation. For
PSScriptProperty this always returns System.Object.

The following example adds a ScriptProperty Cost, which dynamically calculates the sum of DevEffort
and TestEffort

PS C:\> Spsobj = new-object system.management.automation.psobject

PS C:\> add-member -inputobject S$psobj -membertype noteproperty -Name DevEffort
-Value 5

PS C:\> add-member -inputobject $psobj -membertype noteproperty -Name TestEffort
-Value 5 PS C:\> add-member -inputobject S$psobj -membertype scriptproperty -Name
Cost -Value {S$this.TestEffort + $this.DevEffort}

PS C:\> Spsobj
DevEffort TestEffort Cost

10

The following example makes TestEffort always twice the value of DevEEfort:

PS C:\> Spsobj = new-object system.management.automation.psobject
PS C:\> add-member -inputobject $psobj -membertype noteproperty -name TestEffort 0
PS C:\> add-member -inputobject $psobj -membertype noteproperty -name _DevEffort 0
PS C:\> add-member -inputobject Spsobj -membertype scriptproperty -name DevEffort -
value {Sthis._DevEffort} -secondvalue

{
>> Sthis._devEffort = $Sargs[0]; Sthis.TestEffort = 2*$this._devEffort}
>>
PS C:\> Spsobj

TestEffort _DevEffort DevEffort

PS C:\> Spsobj.DevEffort = 10
PS C:\> Spsobj

Chapter 3: Understanding the Extended Type System

TestEffort

PS C:\>

PSCodeProperty

_DevEffort

DevEffort

A psCodeProperty is a “getter” or “’setter”” defined in a CLR language. An extended member, it pro-
vides similar functionality to a property in a CLR language; however, it may be added to a PSObject
dynamically (based on the TypeName lookup or on an Instance).

In order for a PSCodeProperty to become available, a code developer must write the property in some
CLR language, compile it, and ship the resultant assembly. The assembly must be available in the
runspace where the code property is desired.

The definition of a PSCodeProperty is shown in Figure 3-12.

class PSCodeProperty /

PSPropertylnfo
PSCodeProperty

+
+
4L
+

+ o+ + o+ + 4+

Copy() : PSMemberinfo

PSCodeProperty(string, MethodInfo)
PSCodeProperty(string, MethodInfo, MethodInfo)
ToString() : string

«property>»

GetterCodeReference() : MethodInfo
IsGettable() : bool

IsSettable() : bool

MemberType() : PSMemberTypes
SetterCodeReference() : MethodInfo
TypeNameOfValue() : string

Value() : object

Figure 3-12: PSCodeProperty

O constructor takes the name of the member to create and the MethodInfo for get and/or set.
At least one MethodInfo must be present. It stores these in the respective members Getter-
CodeReference and SetterCodeReference.

QO IsSettableis Trueif SetterCodeReference is notNull; otherwise, itis False.

a IsGettableis True if GetterCodeReference is not Null; otherwise, it is False.

43

Chapter 3: Understanding the Extended Type System

44

a

Value will call the appropriate method to perform the action. As shown earlier, a get invokes the
GetterCodeReference, passing its containing PSobject instance, and returns the value returned
from the invocation. A set invokes the SetterCodeReference, passing its containing pSobject
instance as the first argument, and the object to use for the set value as the second argument.

TypeNameOfValue is the TypeName of the object that will be returned from a get operation. In this

case, the TypeName is the CLR full name.

The pSCodeProperty implementation must be thread-safe.

The following example shows the code necessary to create a CodeProperty that gets and sets the Total-

Cost given a PSObject that contains the DevCost and TestCost:

public class CodePropertyTotalCost

{

Note that the methods that implement a PSCodeProperty are static. The instance data comes from the
PSObject that is passed to the first parameter. In the case of the setter, the value to use is passed to the
second parameter. When both a get and a set are defined, the second parameter to the set must be of

public static int TotalCostGet (PSObject instance)
{
return (
(int) instance.Properties["DevCost"].Value +
(int) instance.Properties["TestCost"].Value

) g

public static void TotalCostSet (PSObject instance, int value)
{

int devvalue = value/2;

instance.Properties|["DevCost"].Value = devvalue;
instance.Properties["TestCost"].Value = value - devvalue;

the same type as the return of the get.

Assuming that the assembly which implements CodePropertyTotalCost is available and loaded in this

runspace:
PS> $psobj = new-object system.management.automation.psobject
PS> add-member -inputobject S$psobj -membertype noteproperty -name DevCost 3
Ps> add-member -inputobject $psobj -membertype noteproperty -name Testcost 3
PS> $x=[mynamespace.CodePropertyTotalCost] .GetMethod ("TotalCostGet")
PS> S$Sy=[mynamespace.CodePropertyTotalCost].GetMethod ("TotalCostSet")
PS> add-member -inputobject $psobj -membertype CodeProperty TotalCost $x Sy
PS> S$Spsobj.TotalCost
6
PS> S$psobj.TotalCost=9
PS> $psobj.DevCost
4
PS> $psobj.TestCost
5
PS>

Chapter 3: Understanding the Extended Type System

Notice that a CodeProperty is accessed identically to any other Property member and does not take any

arguments.

PSAliasProperty

A pPSAliasProperty references another property of a PSobject. It is an extended member, and its basic
purpose is to perform a “rename” of the reference property. It may also convert that property to a
different type upon its retrieval.

The definition of an AliasProperty is shown in Figure 3-13.

class PSAliasProperty /

PSAliasProperty

PSPropertylnfo

++ + +

Copy() : PSMemberinfo
PSAliasProperty(string, string)
PSAliasProperty(string, string, Type)
ToString() : string

«property>

++ 4+t

ConversionType() : Type
IsGettable() : bool

IsSettable() : bool

MemberType() : PSMemberTypes
ReferencedMemberName() : string
TypeNameOfValue() : string
Value() : object

Figure 3-13: AliasProperty

0 constructor takes the name of the member to create and the name of the property to alias (the
referenced MemberName). The referenced member may be of any PSMemberType.
The overloaded constructor may also take a type to which the value of the referenced member
will be converted (following the ETS conversion algorithm outlined later in this chapter).

a IsSettable is dynamically determined by examining the IsSettable of the referenced member.

(]

IsGettable is dynamically determined by examining the IsGettable of the referenced member.

0 valueis gotten or set by dereferencing the value of the referenced member — conceptually,
referencedMember.Value.

a TypeNameOfValue is the TypeName of the object that will be returned from a get operation.

The following example adds an AliasProperty called path, which renames the property FullName on
the base FileInfo object:

PS C:\> S$fileobj
PS C:\> add-member

value fullname

= get-childitem bootsect.bak
-inputobject $fileobj

-membertype aliasproperty

-name path -

45

Chapter 3: Understanding the Extended Type System

PS C:\> S$fileobj.path
C:\bootsect.bak

PS C:\> S$fileobj.FullName
C:\bootsect.bak

PS C:\>

Methods

46

Methods are member types that can take arguments, may return some value, normally do significant
work, and cannot appear on the left-hand side of an expression. Specifically, PSMemberTypes .Methods
include Method, ScriptMethod, and CodeMethod member types.

Methods are accessed from script using the same syntax as other members with the addition of parenthe-
ses at the end of the member name.

All methods derive from PSMethodInfo, which is summarized in Figure 3-14.

class PSMethodinfo /

PSMemberinfo
PSMethodInfo

+ Invoke(object(]) : object

PSMethodInfo()

«property»

+ OverloadDefinitions() : Collection<string>
+ Value() : object

Figure 3-14: Methods derived from PSMethodInfo

0 Invokeis the basic mechanism used to call (invoke) the specified method. It is passed in the argu-
ments with which to call the method as an array of objects. Note that these arguments are the
“value”” only, no name.

Q The order and type of the arguments must correspond to the expected parameters of the
particular method being called. Type distance algorithms are used to match the arguments so
that the correct overload is called (see the section ““Distance Algorithm’” later in this chapter).

0 Type conversion is used after type distance is determined to convert the arguments passed to
invoke to the type of parameters needed by the method being called.

O Optional parameters and “params’’ parameters are considered in the distance algorithm and in
the invocation of the method.

Chapter 3: Understanding the Extended Type System

0 valuereturns “this” instance of the derived method type (this approach still enables us to derive
from pPsMemberInfo). Note that this is ““sealed,”” and therefore the derived method types do
not have to deal with this. Any attempt to set the value throws NotSupportedException.

0 overloadDefinitions is a collection of strings that state which overloads are available. These
contain the complete signature for those methods.

The following sections describe PSMembers that derive from PSMethodInfo.

PSMethod

A PSMethod is one that is defined on the BaseObject or is made available through an adapter.

The definition of a PSMethod is shown in Figure 3-15.

class PSMethod /

PSMethodInfo
PSMethod

+ Copy() : PSMemberinfo

+ Invoke(object(]) : object

+ ToString() : string

«property»

+ MemberType() : PSMemberTypes

+ OverloadDefinitions() : Collection<string>
+ TypeNameOfValue() : string

Figure 3-15: PSMethod

0 Invoke calls the underlying CLR method on the adapter or BaseObject. If there is more than one
definition of this method, then the PSMethodInfo base class uses the distance algorithm to deter-
mine which one to call.

Q overloadDefinitions gets the overloads from the CLR methods of this type using reflection.

a TypeNameOfValue returns typeof (PSMethod) . Ful 1Name.
The following example uses the CLR method split to split a string on semicolons:

PS>

PS> S$Sa="abc;xyz;kmh"
PS> Sa.split(";")
abc

XyZ

47

Chapter 3: Understanding the Extended Type System

kmh
PS>

PSScriptMethod

A pSscriptMethod is an extended member method defined in the PowerShell language. It provides
similar functionality to a method on the BaseObject, but it may be added to a Psobject dynamically
(based on the TypeName lookup or on an Instance).

The definition of a PSScriptMethod is shown in Figure 3-16.

class PSScriptMethod /

PSMethodinfo
PSScriptMethod

Copy() : PSMemberinfo

Invoke(object[]) : object
PSScriptMethod(string, ScriptBlock)
ToString() : string

«property»

+ MemberType() : PSMemberTypes

+ OverloadDefinitions() : Collection<string>
+ Script() : ScriptBlock

+ TypeNameOfValue() : string

+ + 4+ +

Figure 3-16: PSScriptMethod

a Script returns the ScriptBlock that defines this ScriptMethod.

(]

Invoke calls the underlying script block specified in the script.

0 overloadDefinitions will always be a collection of 1, as ScriptMethods do not support
overloads yet.

a TypeNameOfValue returns typeof (PSScriptMethod) .FullName.

PS C:\> S$psobj = new-object system.management.automation.psobject

PS C:\> add-member -inputobject $psobj -membertype noteproperty -name DevCost -Value 2
PS C:\> add-member -inputobject $psobj -membertype noteproperty -name TestCost -Value 4
PS C:\> add-member -inputobject $psobj -membertype scriptmethod -name RealCost -Value {
>> param([int] $x)

>> return $x * (Sthis.TestCost + $this.DevCost)

>> }

>>

PS C:\> Spsobj.RealCost (3)

18

PS C:\>

48

Chapter 3: Understanding the Extended Type System

PSCodeMethod

A PSCodelethod is an extended member method defined in a CLR language. It provides similar func-
tionality to a method on the BaseObject, but it may be added to a PSobject dynamically (based on the
TypeName lookup or on an Instance).

In order for a PSCodeMethod to become available, a code developer must write the method in some CLR
language, compile it, and ship the resultant assembly. The assembly must be available in the runspace

where the code method is desired.

The definition of a PSCodeMethod is shown in Figure 3-17.

class PSCodeMethod /

PSMethodlinfo
PSCodeMethod

Copy() : PSMemberinfo

Invoke(object(]) : object
PSCodeMethod(string, MethodlInfo)

+ ToString() : string

«property»

+ CodeReference() : Methodinfo

+ MemberType() : PSMemberTypes

+ OverloadDefinitions() : Collection<string>
+ TypeNameOfValue() : string

+ + o+

Figure 3-17: PSCodeMethod

O Invoke calls the underlying CLR method specified in the CodeReference.
Q overloadDefinitions gets the overloads from the CLR methods of this type using reflection.

a TypeNameOfValue returns typeof (PSCodeMethod) .FullName.

The following example shows the code necessary to create a CodeMethod that computes the RealCost
given amultiplier and a PSObject that contains a TotalCost property:

public class CodeMethodScheduleCost
{
public static int RealCost (PSObject instance, int multiplier)
{
return (int)instance.Properties["TotalCost"].Value * multiplier;
}
}

Note that methods which implement a PSCodeMethod are static. The instance data comes from the psOb-

ject, which is passed to the first parameter. The number and type of the remaining parameters are up to
the individual method. The codeMethod implementation must be thread-safe.

49

Chapter 3: Understanding the Extended Type System

There is currently no mechanism to create overloads (therefore, the Overloads collection is always of
length 1).

Assuming that the assembly which implements RealCost is available on this runspace:

PS C:\> Spsobj = new-object system.management.automation.psobject

PS C:\> add-member -inputobject $psobj -membertype noteproperty -name DevCost -
Value 2

PS C:\> add-member -inputobject S$psobj -membertype noteproperty -name TestCost -
Value 4

PS C:\> add-member -inputobject Spsobj -membertype scriptproperty -name TotalCost -
Value {Sthis.TestCost + $this.DevCost}

PS C:\> S$x=[mynamespace.CodeMethodScheduleCost] .GetMethod ("RealCost")

PS C:\>add-member -inputobject $psobj -membertype CodeMethod -name RealCost -Value $x
PS C:\> Sa.TotalCost

6

PS C:\> Sa.RealCost (3);

18

PS C:\>

PSParameterizedProperty

A pSParameterizedpProperty is how ETS exposes COM parameterized properties to the developer and
engine. It combines parts of both a property and a method. It derives from PsSMethodInfo because usage
has shown this to be most effective (because anything taking arguments requires an “invoke”-style
member instead of just a simple get/set interface). The definition of a PSParameterizedProperty is
shown in Figure 3-18.

class PSParameterizedProperty /

PSMethodinfo
PSParameterizedProperty

Copy() : PSMemberinfo
Invoke(object(]) : object
InvokeSet(object, object[]) : void
ToString() : string

+ + + +

«property»

+ IsGettable() : bool

IsSettable() : bool

MemberType() : PSMemberTypes
OverloadDefinitions() : Collection<string>
TypeNameOfValue() : string

+ + + +

Figure 3-18: Definition of a PSParameterizedProperty

50

Chapter 3: Understanding the Extended Type System

0 constructor is not public because a user may not create one of these. It is only exposed if an
adapter provides it.

Q Invoke calls the underlying COM parameterized property “getter”” with the arguments
passed in.

Q overloadDefinitions gets the overloads from the COM properties of this type using IDispatch
and TypeLibraries.

0 InvokeSet calls the underlying COM parameterized property “’setter”” with the arguments
passed in and the valueToset as the value to assign to that property.

0 IsSettableisdynamically determined by examining the IsSettable of the referenced member.
0 IsGettableisdynamically determined by examining the IsGettable of the referenced member.

a TypeNameOfValue returns typeof (PSParameterizedProperty) .FullName.

Sets

PSObject is, at its most basic level, a named and dynamically typed collection of members. It is very use-
ful to be able to partition these sets of members into different subsets so that the subset may be referenced
together. There are two types of member subsets:

0 PropertySet — A name to specify a number of properties

O MemberSet — A collection of any extended member types. These are defined more fully in the
following subsections.

Taken together these sets offer powerful capabilities. For example, PowerShell defines a well-known
MemberSet PSStandardMembers to define how parts of the PowerShell system will interact with a par-
ticular pPSObject. One specific case is the PropertySet DefaultDisplayPropertySet, which is used by
formatting and output to determine at runtime which properties to display for a given pSObject.

PSPropertySet

A PSPropertySet acts as an alias that points to 1 other properties. It is used to refer to a set of properties
that have a common purpose or use. These properties may then be referred to as a ““set”” by single name.

You can normally use a PropertySet whenever a list of properties is requested.
The definition of a PSPropertySet is shown in Figure 3-19.

Q Constructor takes the name of the member to create and an IEnumerable<string> that states
the names of the properties to reference when value is retrieved. The members referred to by
referencedPropertyNames must be of type PSMemberTypes . Properties or PSMemberTypes
.PropertySet.

Q valuereturns the PSPropertySet itself. An attempt to set value throws Not
SupportedException.

0 TypeNameOfValue is the fully qualified type name of PSPropertySet (i.e., System.Management
.Automation. PSPropertySet).

51

Chapter 3: Understanding the Extended Type System

class PSPropertySet /

PSMemberinfo
PSPropertySet

+ Copy() : PSMemberinfo

+ PSPropertySet(string, IEnumerable<string>)

+ ToString() : string

«property»

+ MemberType() : PSMemberTypes
ReferencedPropertyNames() : Collection<string>
TypeNameOfValue() : string

Value() : object

+ + +

Figure 3-19: Definition of a PSPropertySet

For example, you could create a PropertySet that states the times of interest for a particular file:

PS C:\> S$fileobj = get-childitem bootsect.bak

PS C:\> Sproperties = new-object
system.collections.objectmodel.collection''l[System.String]

PS C:\> Sproperties.Add("CreationTime")

PS C:\> Sproperties.Add("LastAccessTime")

PS C:\> Sproperties.Add("LastWriteTime")

PS C:\> add-member -inputobject $fileobj -membertype propertyset -name Times
-value S$properties

PS C:\> S$fileobj | select-object Times

CreationTime LastAccessTime LastWriteTime
10/19/2007 3:25:52 PM 10/19/2007 3:25:52 PM 10/19/2007 3:25:52 PM
PS C:\>

PSMemberSet

52

A pSMemberSet contains other extended members of any type. Importantly, the this pointer inside
the pSMembersSet refers to the containing PSobject. Therefore, ScriptProperties, ScriptMethods,
AliasProperties, PropertySet, and so forth may all reference the members in the PSObject (see

Figure 3-20).

0O Constructor takes the name of the MemberSet to create. An additional constructor takes the
name of the MemberSet to create and an IEnumerable<PSMemberInfo> that specifies the mem-
bers to add to that MemberSet.

0 Members gets the collection of members contained in this MembersSet.

0 Methods gets the collection of methods (PSMemberTypes.Methods) contained in this MemberSet.

Chapter 3: Understanding the Extended Type System

a Properties gets the collection of properties (PSMemberTypes . Properties) contained in this Mem-
berSet.

Q InheritMemberstells this MemberSet to walk the TypeNames during a lookup of members. This
means that any members of a parent type that are in a MembersSet of the same name will be
available through this Memberset. The default is True.

0 value returns the PSMemberSet itself. An attempt to set value throws NotSupported.

a TypeNameOfValue is the fully qualified type name of PSMemberset (i.e., System.Management
.Automation.PSMembersSet).

class PSMemberSet /

PSMemberinfo
PSMemberSet

+ Copy() : PSMemberinfo

+ PSMemberSet(string)

+ PSMemberSet(string, IEnumerable<PSMemberinfo>)
+ ToString() : string

«property»

InheritMembers() : bool

Members() : PSMemberlnfoCollection<PSMemberinfo>
MemberType() : PSMemberTypes

Methods() : PSMemberinfoCollection<PSMethodInfo>
Properties() : PSMemberinfoCollection<PSPropertylnfo>
TypeNameOfValue() : string

Value() : object

o+ o+

Figure 3-20: Members in the PSObject

For example, a PSObject with a FileInfo BaseObject contains members of Mode (a ScriptProperty),
LastWriteTime (a PSProperty), Length (a PSProperty), and Name (a PSProperty). In the well-known
MemberSet PSStandardMembers, a PropertySet member could be added that referred to those members.

MembersSets allow different parties to create ExtendedMembers in a less conflicting way; only the Member-
Set name conflicts, its contained members do not.

ETS itself uses this functionality and defines a few well-known MemberSets, as described in the section
“Standard MemberSets.”

TypeNames

TypeNames is the list of TypeNames that this PSObject represents (it is a Collection<String>). Upon
instantiation, TypeNames is set to the derivation hierarchy of the BaseObject. If there is no BaseObject,
then TypeNames is empty.

A single TypeName is represented by a string, enabling the script developer to define new types

dynamically. Therefore, TypeNames allows for dynamic derivation; that is, it allows a developer to state
from which TypeName a PSObject should derive.

53

Chapter 3: Understanding the Extended Type System

TypeNames are ordered such that the least index takes greatest precedence (e.g., members defined in
TypeNames [0] will take precedence over members defined in TypeNames[1]). In other words, TypeNames
lists the types from most specific to least specific. See the following section, “Lookup Algorithm,” to learn
how this is done.

Lookup Algorithm

D

54

A lookup algorithm is used any time a developer references a member — for example, accessing the
member of a variable like $a.x (inside a script). For a code developer, this lookup algorithm is initiated
while accessing the members, properties, methods, or index properties of PSObject.

Conceptually, the basic algorithm is designed to look up the members in the following order:

1. Extended instance members: These are the members added to an object using the
add-member cmdlet.

2. Extended type members: This is done by walking up TypeNames against the TypeData file(s).
Essentially, for each element in TypeNames (starting with Length-1), it walks the list of Type-
ConfigurationEntry (starting with 0) looking for the definition of an extended member
for that type. When found, it adds those members (or returns the member if looking for
a single member) and starts the lookup for the next TypeName. In this way, Oth TypeName
and Oth TypeConfigurationEntry should win (i.e., override others later in the list).

3. Adapted members: This is done by querying the type adapter for properties and methods of
the particular name(s) desired. This interface is not public at this time.

Notice that we do not actually lookup against the BaseMembers. This is because adapters hide the BaseOb-
ject in the default lookup. When the BaseObject is a .NET class, an internal default DotNet adapter is
used. Therefore, an adapter is always available for any given object. As noted earlier, explicit access to
BaselMembers is available through a hidden pPSBase property in script. For a programmer, access to the
original CLR object is available through the property ImmediateBaseObject (of the PSObject).

Naming collisions are not possible between extended instance members and extended type members — it
is an error to add an extended instance member that would collide with an extended type member.

Naming collisions are currently possible between extended members and adapted members. In such
a case, extended members override adapted members. Proper care needs to be taken while adding
extended members through type files, through the add-member cmdlet, or by adding directly to

a PSObject.

istance Algorithm

Distance algorithms are used to determine which method to call when more than one method is possible
(for example, when overloads are present). This is done by determining the distance between every
argument and its corresponding parameter for each overload. The distance between an argument and

a parameter is determined by a table with a heuristic approximation of the risk involved in the type
conversion between the two types. The types that are understood (have an entry in this table) are as
follows: char, int16, int32, int64, UInt16, UInt32, UInt64, float, double, decimal, bool, string,
char[], regex, XmlDocument, object [].

Chapter 3: Understanding the Extended Type System

A script developer may modify the results of the distance algorithm by “cast”ing the arguments to match
the parameters of a certain overload.

This table is currently hard-coded, so it doesn’t take into account the additional converters or constructors
that might be specified by a developer.

PSObject Intrinsic Members and MemberSets

To facilitate developer access and control, PSObject supports five intrinsic members: PSExtended,
PSAdapted, PSBase, PSObject, and PSTypeNames.

In order to allow developers to override the lookup algorithm and directly access each type of member,
PSObject intrinsically supports three MemberSets:

a pSExtended: This MembersSet allows access to all extended members, and only extended
members. No adapted members are present. For example, $a.PSExtended.x will get the
ExtendedMember x. It will not make any access to the adapter if there is no ExtendedMenber by
that name (in this case, x).

O PSaAdapted: This Memberset allows access to all members made available through the adapter
indicated by the BaseObject.

0 PpsBase: This Memberset allows direct access to all public members on the BaseObject. No access
is made to an ExtendedMember or an AdaptedMember.

pSObject allows script developers to directly access it (the meta-object) as needed. It does this by pro-
viding a MemberSet named Psobject. Therefore, $a.PSObject . Members references the Members property
available on PsObject itself, returning a PSMemberInfoCollection.

As noted, the TypeNames list is the mechanism the system uses to determine the “type” of a
PSObject. As shown in the section ““Lookup Algorithm,” the TypeNames list enables the developer
to dynamically define derivation. PSObject supplies an intrinsic NoteProperty named PSTypeNames
that references this list. Therefore, $a.PSTypeNames shows the TypeNames list for $a.

Errors and Exceptions

Errors can occur in the ETS at two points: during initialization (loading) of type data (see “Initializa-
tion Errors”), and when accessing a member of a PSObject or using one of the utility classes such as
LanguagePrimitivies. (See the following section, “Runtime Errors.”)

ETS does not swallow any exceptions.

Runtime Errors

With one exception noted below, all the exceptions thrown from the ETS during runtime are,

or derive from, ExtendedTypeSystemException, which derives from RuntimeException. Therefore,
they may be trapped by advanced script developers using the Trap statement in the PowerShell
language.

55

Chapter 3: Understanding the Extended Type System

In

56

All exceptions that occur when getting the value of a PSMember are of the type GetValueException. When
the ETS itself recognizes the error, a GetValueException is thrown. When the underlying get, such as
a CodeProperty, throws an exception, a GetValueInvocationException is thrown with the getter’s
exception as the inner exception.

All exceptions that occur during a set of the value of a PSMemberTypes. Property are of the type Setval-
ueException. When the ETS itself recognizes the error, a SetValueException is thrown. If the underlying
get, such as a CodeProperty, throws an exception, then a SetvValueInvocationExceptionis thrown with
the getter’s exception as the inner exception.

All exceptions that occur during the invocation of a PSMemberTypes . Method are of type MethodExcep-
tion. When the ETS itself recognizes the error, a MethodException is thrown. When the underlying
CodelMethod throws an exception, a MethodInvocationException is thrown with the CodeMethod’s excep-
tion as the inner exception.

When an invalid cast is attempted, a PSInvalidCastException is thrown. Because this derives from
InvalidCastException, it cannot be directly trapped from script. This means that the entity attempting
the cast would need to wrap PSInvalidCastException in a PSRuntimeException in order for this to be
trappable by script developers.

If an attempt is made to set a value of PSPropertySet, PSMemberSet, PSMethodInfo, or a member of a
ReadOnlyPSMemberInfoCollection, a NotSupportedException is thrown.

All other exceptions are ExtendedTypeSystemException instead of more specific derived exceptions.

itialization Errors

Errors in loading a typexml file should work like other PowerShell errors. If processing can continue,
then it is a nonfatal error and it would call WriteDebug (because there’s no Error pipe at this time). If
a terminating error is found such that the rest of the file cannot continue, then the rest of the file is not
processed (but does not throw a terminating exception). Note that there are no terminating errors at
this time.

Information includes the following:

Q Filename
Line number
Type in which the error occurred

Member in which the error occurred

O 000

Specific cause of the error

For example, adding a duplicate member count to the System.Object array would provide the following
error:

DEBUG: Error loading Types.PSxml:
c:\temp\monad\types.PSxml (8) : Error in type "System.Object[]":
Member "Count" is already present.

Chapter 3: Understanding the Extended Type System

Type Conversion

Type converters are used any time an attempt is made to convert an object of one type to another type
(such as string to int). For example, the ParameterBinding algorithm performs type conversion when
trying to bind incoming objects to a particular parameter and during casts in the PowerShell scripting

language.

Attempts to convert one object to another type are separated into two different buckets:

Q Standard PowerShell Language conversions: These are checked first and cannot be overridden.

d Custom conversions

Both are discussed in detail in the following sections.

Standard PS Language Conversion

Standard PS Language conversions follow the order shown in the following table when converting a
value from one type to another type (note that valueToConvert is used to represent the object to convert).

From Type To Type Returns
null String String. Empty
Char “\0’
Numeric 0 of the resultType
Boolean False
Non-value-types Null
Nullable<T> Null
DerivedClass BaseClass Original object
Anything void AutomationNull.Value
Anything String Calls the ToString mechanism (see the section
“ToString Mechanism””)
Anything Boolean LanguagePrimitives.IsTrue(valueToConvert)
Anything PSObject PSObject. AsPSObject(valueToConvert)
Anything XMLDocument Converts valueToConvert to String, and then calls the
XMLDocument constructor
Anything Nullable<T> Converts to Nullable<T>(valueToConvert is first converted
to type T. If conversion succeeds, then the converted value
is used to convert to Nullable<T>.)
Array Array Tries to convert each array element

57

Chapter 3: Understanding the Extended Type System

(continued)

From Type To Type Returns

Singleton Array array[0] = valueToConvert converted to the element type of
the array

IDictionary Hashtable Hashtable(valueToConvert)

String Charf[] valueToConvert.ToCharArray()

String RegEx RegEx(valueToConvert)

String Type Uses the valueToConvert to search in the internal
representation of RunSpaceConfiguration.Assemblies

String Numeric If valueToConvert is “*”’, then it returns 0 of the resultType.
Otherwise, the culture “culture invariant” is used to produce
a numeric value.

Integer System.Enum Converts the integer to the enumeration if the integer is
defined in that enumeration. If the integer is not defined in
that enumeration, then it throws an PSInvalidCastException.

Custom Converters

If none of the preceding Standard PowerShell Language conversions apply, then custom converters

are checked.

If one of the following custom conversion operations throws an exception (i.e., the converter is found
but it fails the conversion), then no further attempt to convert the object will be made and the original
exception is wrapped in a PSInvalidCastException, which will then be thrown.

Custom converters are executed in the following order:

TypeConverter

This is a CLR defined type that can be assigned to a particular type using the TypeConverterAttribute or
the <TypeConverter> tagin TypeData (see the “Type Configuration” section). If the valueToConvert has
a TypeConverter that can convert to resultType, then it is called. If the resultType has a TypeConverter

that can convert from valueToConvert, then it is called.

The CLR TypeConverter does not allow a single type converter to work for n different classes.

Parse

If the valueToConvert is a string and the resultType has a Parse method, then it is called.

Parse is a well-known method name in the CLR world.

O Constructors: If the resultType has a constructor that takes a single parameter of type value-
ToConvert.GetType (), then this is called.

58

Chapter 3: Understanding the Extended Type System

Q Implicit cast operator: If valueToConvert has an implicit cast operator that converts to
resultType, then it is called. If resultType has an implicit cast operator that converts from
valueToConvert, then it is called.

O Explicit cast operator: If valueToConvert has an explicit cast operator that converts to
resultType, then it is called. If resultType has an explicit cast operator that converts from
valueToConvert, then it is called.

O IConvertible: System.Convert.ChangeType is then called.

PSTypeConverter

A PSTypeConverter can be assigned to a particular type using the TypeConverterAttribute or the
<TypeConverter> tag in the TypeData file (see the “Type Configuration” section for more details). If the
valueToConvert has a PSTypeConverter that can convert to resultType, then this PSTypeConverter is
called. If the resultType has a PSTypeConverter that can convert from valueToConvert, then it is called.

PSTypeConverter allows a single type converter to work for n different classes. For example, an enum
type converter can convert a string to any enum (there doesn’t need to be a separate type to convert

each enum).

The PsTypeConverter class is defined as follows and shown in Figure 3-21.

class PSTypeConverter/

PSTypeConverter

CanConvertFrom(object, Type) : bool
CanConvertTo(object, Type) : bool

ConvertFrom(object, Type, IFormatProvider, bool) : object
ConvertTo(object, Type, IFormatProvider, bool) : object

+ + + +

Figure 3-21: PSTypeConverter class

In order to use PSTypeConverter, attribute the class with TypeConverterAttribute, passing it your type
converter derived from PSTypeConverter.

Specific Implementations of PSTypeConverter

Windows PowerShell ships with a custom PSTypeConverter called ConvertThroughString, which
specifies that a particular destination type will always use valueToConvert.ToString () before being
converted using the standard string conversions to the destination type:

public class ConvertThroughString : PSTypeConverter
{

public override bool CanConvertFrom(object sourceValue, Type destinationType) ;

59

Chapter 3: Understanding the Extended Type System

public override object ConvertFrom(object sourceValue, Type destination-
Type, IFormatProvider formatProvider, bool ignoreCase); // for string conversions

public override bool CanConvertTo (object sourceValue, Type destinationType) ;

public override object ConvertTo (object sourceValue, Type destinationType, IFor-
matProvider formatProvider, bool ignoreCase);

}

ToString Mechanism

PSObject implements a version of ToString that is designed to allow customization of ToString and
provide the most useful implementation of it. It does this by following the logic shown here:

a If there is a PSCodeMethod named ToString, then it is called and its value returned.

a If the BaseObject is IEnumerable, then the Output-Field-Separator ($0FS) separated list of the
ToString of each element is returned — the ToString of the element might clearly be
overridden using the other mechanisms. If the enumeration throws an exception, then the
BaseObject.ToString is attempted.

Q If the BaseObject is PSNullBaseObject, then the members of type PSMemberTypes. Properties
are returned in hash table syntax.

0 Otherwise, the BaseObject .ToString is called and its value returned. If BaseObject.ToString
throws an exception, then this original exception is wrapped in an ExtendedTypeSystemExcep-
tion, which is then thrown.

Type Configuration (TypeData)

In the preceding examples, only instance members are used to keep them simple. However, all extended
members may also be defined against a TypeName in a type configuration XML specification. Because
XML is case sensitive, the nodes of TypeData are also case sensitive. However, the contents of those
nodes are not case sensitive.

The following example defines the schema of a type configuration file. For the sake of brevity, I used the
following logic to define the schema:

0 Indentation represents containment. For example, the element <Types> contains the
<Type> element.

0 Symbols in square brackets (e.g., [0. .X]) represent cardinality.

a [0..Many] indicates that a particular element can occur 0 to many times.

<Types> [1]
<Type> [0..Many]
<Name> [1]
<Members> [0..1]
<NoteProperty> [0..Many]
<AliasProperty> [0..Many]
<ScriptProperty> [0..Many]

60

Chapter 3: Understanding the Extended Type System

<CodeProperty> [0..Many]
<ScriptMethod> [0..Many]
<CodeMethod> [0..Many]
<PropertySet> [0..Many]
<MemberSet> [0..Many]
<TypeConverter> [0..1]
<TypeName> [1]

<NoteProperty>
<Value> [1]
<TypeName> [0..1]

<AliasProperty>
<ReferencedMemberName> [1]
<TypeName> [0..1]

<ScriptProperty>
<Name>
<GetScriptBlock> [0..1]
<SetScriptBlock> [0..1]

<CodeProperty>

<Name> [1]

<GetCodeReference> [0..1]
<TypeName> [1]
<MethodName> [1]

<SetCodeReference> [0..1]

<TypeName> [1]
<MethodName> [1]

<ScriptMethod>
<Name> [1]
<Script> [1]

<CodeMethod>
<Name> [1]
<CodeReference> [1]
<TypeName> [1]
<MethodName> [1]

<PropertySet>

<Name> [1]
<ReferencedProperties>
<Name> [1..Many]

<MemberSet>

<Name> [1]

<InheritMembers> [0..1]

<Members> [0..1]
<NoteProperty> [0..Many]
<AliasProperty> [0..Many]
<ScriptProperty> [0..Many]
<CodeProperty> [0..Many]

61

Chapter 3: Understanding the Extended Type System

<ScriptMethod> [0..Many]
<CodeMethod> [0..Many]
<PropertySet> [0..Many]
<MemberSet> [0..Many]

As per the preceding rules, there can be only one <Types> element in a type configuration file. However,
there can be many <Type> elements inside a <Types> element.

If <InheritMembers> element is present, then it must have an innerText. That innerText must be either
True or False (case-insensitive). By default, MemberSets inherit members (refer to the “PSMemberSet”
section for more details).

If there is a definition conflict between different type configuration entries (or files), then the first one
processed without errors wins.

If a schema check fails (e.g., a child element is of the wrong cardinality), then that entry is not processed.
For example, if a <Type> element has two <Name> child elements, then that <Type> entry fails to be
loaded into Windows PowerShell’s type table.

Well-Known Members

In order for the PowerShell system itself to understand how to best operate against a particular PSOb-
ject, a set of well-known members is provided. For example, there is a particular member that defines what
properties to display by default, or what properties to use for sorting. These members should be associ-
ated with each psobject (either by adding InstanceMembers or TypeMembers) that want to participate in
these activities.

Script Access

Scripts are able to access all extended members, adapted members, and base members, as well as the
PSObject itself (the meta-object that contains all those). By default, script access has been optimized
using the lookup algorithm described earlier. However, using the special MemberSets described above,
script developers have complete access to all the different capabilities and abstractions of a PSObject.
This approach enables both simple day-to-day usage as well as the creation of powerful scripts.

Summary

62

The Extended Type System (ETS) is one of the core elements of the Windows PowerShell Engine and it
forms the basis of all object access and manipulation in Windows PowerShell. This chapter took a close
look at the ETS, including the following topics:

0 The Psobject and its various members

0 Construction of the Psobject

Q Different member types of the PSObject

Q

Details about each of the extended members that can be created and added to the PsObject

Developing Cmdlets

Developing cmdlets is one of the most common and powerful ways to extend PowerShell function-
ality. This chapter explains different aspects of authoring PowerShell cmdlets.

In a traditional shell such as a Unix shell or DOS’s cmd. exe, each command is a standalone exe-
cutable. Developing traditional command executables involves the following tasks:

Q Parsing command lines, which normally includes command name, command parameter,
and command arguments
Q Processing command input, which normally is in text format

Q Performing command logic, which can involve transforming command input into a differ-
ent format for easier processing

O Generating command output, which typically is text writing to a console or outputting to
a file

0 Reporting errors in case command invocation is not successful

Unlike traditional commands, PowerShell cmdlets are .NET classes hosted in a PowerShell runtime
environment. As a result, chores such as command-line parsing, input and output processing, and
error reporting can be greatly simplified. This chapter illustrates how.

Getting Started

Developing a PowerShell cmdlet starts with the creation of a cmdlet class. The code in the following
example implements the cmdlet touch-file, which updates the timestamp of a file to the current
time. Please pay particular attention to the Cmdlet and Parameter attributes when reading through
the code:

[Cmdlet ("Touch", "File")]
public class TouchFileCommand : PSCmdlet

Chapter 4: Developing Cmdlets

64

private string path = null;

[Parameter]
public string Path
{
get
{
return path;

path = value;
}

protected override void ProcessRecord ()
{
if (File.Exists(path))
{
File.SetLastWriteTime (path, DateTime.Now) ;
}

The cmdlet touch-file is implemented in the class TouchFileCommand, which derives from the PSCmdlet

class. Cmdlet attributes of the class TouchFileCommand define the verb and noun that make up the
cmdlet’s name.

Within the TouchFileCommand class, the Path property is marked as a command parameter through the
parameter attribute. Logic for this command is implemented in the ProcessRecord () method, which
simply calls the appropriate .NET API by setting LastwriteTime for the file.

To execute this command in PowerShell, specify the -path parameter and parameter arguments to the
touch-file command, as shown here:

PS C:\user\gxie> dir

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\user\gxie

Mode LastWriteTime Length Name

—Gl=== 6/9/2007 4:47 PM 420 readme.txt

PS C:\user\gxie> touch-file -path c:\user\gxie\readme.txt

Chapter 4: Developing Cmdlets

PS C:\user\gxie> dir
Directory: Microsoft.PowerShell.Core\FileSystem::C:\user\gxie

Mode LastWriteTime Length Name

=E=== 6/10/2007 10:44 AM 420 readme.txt
You can see that the timestamp for c:\user\gxie\readme. txt is updated to the current time.

Next, let’s move on to look at how the PowerShell runtime environment interacts with the TouchFileCom-
mand class when the touch-file cmdlet is invoked.

Command-Line Parsing

When PowerShell receives a command, it parses the command into a list of command elements, which
includes the following:

0O Command name: The first token of the command line

0O Command parameters: Command elements starting with a hyphen (-)

0 Command arguments: Command elements that are not command name or command parameters
For example, the full command touch-file -path c:\user\gxie\readme. txt will be parsed into a

command element list including one command name (touch-£file), one command parameter (-path),
and one command argument (c: \user\gxie\readme. txt).

Command-line parsing is done by the PowerShell runtime environment without involving specific
cmdlets. This simplifies the task for cmdlet development and at the same time delivers consistent
command-line syntax across all cmdlets.

In PowerShell, a command argument may or may not be associated with a command parameter. This
association, however, is not determined until the metadata for the specific command is consulted to
determine whether a parameter is expecting an argument or not.

For example, at command-line parsing time, PowerShell doesn’t know that the command argument
c:\user\gxie\readme. txt is associated with the command parameter -path. This association is made
later, at parameter binding time.

Command Discovery

Before a command can be invoked, PowerShell needs to determine whether the command is an alias,
a function, a cmdlet, a script file, or even a native executable invocation. This step is called command
discovery.

65

Chapter 4: Developing Cmdlets

Command discovery of cmdlets is done through a cmdlet table, which is constructed when snap-ins are
loaded into a PowerShell session. For example, when the snap-in assembly containing TouchFileCommand
is loaded into a PowerShell session, the PowerShell Snapin Loader will find types in the snap-in assembly
that meet the following criteria:

Q Derive (directly or indirectly) from pscmdlet class

QO Include a cmdlet attribute, which supplies a verb and a noun

0 Provide a default public constructor so that an instance of the class can be instantiated

For each type that is discovered in this fashion, PowerShell constructs the necessary cmdlet metadata,
and then adds the cmdlet metadata into the cmdlet table.

When a command is being invoked, PowerShell’s command discovery consults the cmdlet table to
determine whether the command matches any cmdlets within the table. If a match is found, then the
related cmdlet metadata is retrieved for parameter binding and command invocation, as explained in the
following sections.

Command metadata is constructed through reflection on the cmdlet type. It includes information such as
the following;:

0O Name of the cmdlet (including verb and noun)

O The type that implements the cmdlet

O Parameters for the cndlet

Parameter Binding

66

At this step, PowerShell binds command parameters and command arguments from the command into
the cmdlet instance to be invoked.

Parameter binding is done based on cmdlet metadata retrieved during the command discovery. First,
based on the type that implements the cmdlet, PowerShell will create an instance from it. Then, the
parameter information in the cmdlet metadata is consulted to determine the list of allowed parameters,
and whether a parameter expects an argument or not.

For the touch-file command example, based on cmdlet metadata, PowerShell found that path is a
valid parameter that takes a string as its argument. With this information, the command argument
c:\user\gxie\readme. txt will be associated with the command parameter -path.

To bind a parameter value into a cmdlet instance, setters of the corresponding property are called. For
example, to bind c:\user\gxie\readme. txt to the parameter -path, the property Path of the Touch-
FileCommand instance is set to the string value "c:\user\gxie\readme.txt".

After the parameter binding is completed, the cmdlet instance will have the parameter property values
filled in. Then the cmdlet instance is ready to be invoked for command execution.

The complexity of parameter binding goes well beyond what is described here. In the section “Using
Parameters,” you will learn more details about the different kinds of parameters and how they are bound.

Chapter 4: Developing Cmdlets

Command Invocation

Command invocation is done by calling appropriate methods for the cmdlet instance created during

parameter binding. These methods include BeginProcessing (), ProcessRecord (), and EndProcess-
ing (). All three methods, described in the following list, are virtual methods defined in the PSCmdlet
base class and can be overridden in cmdlet implementation classes.

0 BeginProcessing() provides the cmdlet with a chance to perform one-time-only start-up
operations. This method is called only once, before all calls to ProcessRecord () and EndPro-
cessing().

Q ProcessRecord() is a method most cmdlets override to do the bulk of their work. If a cmdlet is
the first command in a pipeline, then this method is called once. Conversely, if a cmdlet is not the
first command in pipeline, then this method is called for each pipeline input object.

0 EndProcessing() is a method that cmdlets can derive to perform closing operations. This
method is called after all ProcessRecord () calls are completed.

Optionally, you can override these three methods in child cmdlet classes. It is common for a cmdlet class
to derive only one or two of these three methods.

Using Parameters

Command-line syntax of a cmdlet is shaped by parameters declared in the cmdlet class. To provide a
rich and intuitive command-line user experience, PowerShell allows different aspects of a parameter to
be defined, including the following:

0 Mandatory or optional: A parameter can be mandatory or optional.

0 Positional or named: A parameter can be identified by its position on the command line, or
by an explicit name. For example, if you use the copy-item command, you usually specify the
source and destination parameters without giving the parameter names.

0 Parameter validation: Some validation rules can be attached to a parameter so that the parame-
ter value will be validated before it is bound.

0 Parameter transformation: Some transformation rules can be attached to a parameter so that a
parameter value from a different type is transformed to the correct type expected by the parame-
ter before it is bound.

0 Parameter Sets: Parameters can be grouped into different parameter sets so that parameters from
different sets can be mutually exclusive on the command line.

Mandatory Parameters

You can define mandatory parameters by setting the Mandatory property of the parameter attribute, as
shown in the following example:

[Cmdlet ("Touch", "File")]
public class TouchFileCommand : PSCmdlet

67

Chapter 4: Developing Cmdlets

private string path = null;

[Parameter (Mandatory=true)]

public string Path
{

get

{

return path;

path = value;
}

protected override void ProcessRecord ()
{

if (File.Exists(path))

{

File.SetLastWriteTime (path, DateTime.Now) ;

If a parameter is mandatory, then it needs to be bound (either from the command line or through pipeline
input, which is discussed later) before the command logic can be invoked. If a mandatory parameter is
not specified, then the user is prompted to provide a value, as shown in the following example:

PS C:\user\gxie> touch-file

cmdlet touch-file at command pipeline position 1

Supply values for the following parameters:
Path:

Positional Parameters

To use the touch-file cmdlet, users have to type the -path command parameter at the command line.
Otherwise, a parameter binding failure will be reported, as shown here:

PS C:\user\gxie> touch-file c:\user\gxie\readme.txt

Touch-File : A parameter cannot be found that matches parameter name 'c:\user)\
gxie\readme.txt'.
At line:1 char:11

+ touch-file <<<< c:\user\gxie\readme.txt

This seems a little clumsy, however. To resolve this, positional parameters are supported in PowerShell
to associate a command argument with a parameter based on its position. That way, the parameter name
doesn’t have to be explicitly mentioned in the command line.

68

Chapter 4: Developing Cmdlets

To define a parameter to be positional, you can add a position value for the parameter, as shown in the
following example:

[Cmdlet ("Touch", "File")]
public class TouchFileCommand : PSCmdlet

{

}

private string path = null;

[Parameter (Mandatory=true, Position=1)]

public string Path
{

get

{

return path;

path = value;
}

protected override void ProcessRecord()
{
if (File.Exists(path))
{
File.SetLastWriteTime (path, DateTime.Now) ;
}

Now if you run the command without the -path command parameter, it will work, as shown in this
example:

PS C:\user\gxie> touch-file c:\user\gxie\readme.txt

PS C:\user\gxie>

Parameter Binding for Positional Parameters

Now it’s time to look at how positional parameters are bound. PowerShell uses the following process for
binding positional parameters:

Q

Q

First-named parameters (parameters whose names are explicitly typed out on the command line)
are bound first.

PowerShell puts unbound command arguments from the command line into a list called an
unbound argument list, based on the position of arguments in the command line.

PowerShell puts unbound positional parameters into a list called an unbound positional parameter
list, based on the position value of the parameter declared in the cmdlet.

The unbound argument list is matched against the unbound positional parameter list for binding
command arguments to positional parameters. If there are more unbound arguments than posi-
tional parameters, then a parameter binding error is reported.

69

Chapter 4: Developing Cmdlets

For example, assume a scenario in which a cmdlet test-parameter takes five parameters: parama,
paramB, paramC, paramb, and paramE, with parama, params, and paramC declared to have positions 1, 2,
and 3, respectively. Also assume that all five parameters expect an argument value. Now we can examine
how these parameters will be bound for the command example shown here:

PS C:\user\gxie> test-parameter -paramD argl arg2 -paramB arg3 argd

First, there are two named parameters in the command: -paramD and -paramB. They are bound first. As
a result, argl will be bound to paramb, and arg3 will be bound to paramB. In addition, arg2 and arg4 are
not bound, so we put them into an unbound argument list:

O Unbound argument list: arg2, arg4
Three parameters are unbound: parama, paramC, and paramE. Because paramE is not positional, we put
paramA and paramC into an unbound positional parameter list, which is ordered based on position value
declared:

QO Unbound positional parameter list: parama (position = 1), paramC (position = 3)

Now we match the unbound argument list with the unbound positional parameter list. As a result, arg2
is bound to parama and arg4 is bound to paramc.

Remaining-Argument Parameter

70

The remaining-argument parameter is a special positional parameter that takes the list of the remaining
arguments after the named parameter binding and the positional parameter binding.

The following example illustrates how a remaining-argument parameter can be defined:

[Cmdlet ("Test", "RemainingArgumentParameter")]
public class Test RemainingArgumentParameter Command : PSCmdlet

{

private object[] arguments = null;

[Parameter (ValueFromRemainingArguments=true)]
public object[] Arguments

{
get
{

return arguments;

arguments=value;

Because in most cases there can be more than one remaining argument, normally the remaining-argument
parameter is defined to be an array.

Chapter 4: Developing Cmdlets

For example, let’s assume that the test-parameter cmdlet mentioned earlier is expanded to take a sixth
parameter, paramF, which takes its value from remaining arguments. Then, for the command

PS C:\user\gxie> test-parameter -paramD argl arg2 -paramB arg3 argd arg5 argéb

arguments argl, arg3, arg2, and arg4 will be bound to paramD, paramB, parama, and paramC, as men-
tioned before. The remaining arguments are arg5 and arg6, which are packed in an array and bound to
the remaining-argument parameter, paramf.

Parameter Sets

Frequently, a cmdlet needs to have the capability to handle parameters that appear in different combi-
nations. For the touch-file cmdlet described earlier, for example, it would be nice if the cmdlet could
directly take a FileInfo object and directly operate on it.

To support this capability, PowerShell supports parameter sets, which organize parameters into mutually
exclusive groups. At runtime, PowerShell will pick one parameter set depending on the parameters
specified on the command line.

The following example is an enhanced version of the touch-file cmdlet, illustrating how parameter sets
can be defined and used:

[Cmdlet ("Touch", "File")]
public class TouchFileCommand : PSCmdlet
{

private string path = null;

[Parameter (ParameterSetName = "PathSet", Mandatory=true, Position=1)]

public string Path
{

get

{

return path;

path = value;
}

private FileInfo fileInfo = null;

[Parameter (ParameterSetName = "FileInfoSet", Mandatory = true, Position = 1)]

public FileInfo FileInfo
{

get

{

return filelInfo;

set

71

Chapter 4: Developing Cmdlets

fileInfo = value;

}

protected override void ProcessRecord()

{
if (fileInfo != null)

{

fileInfo.LastWriteTime = DateTime.Now;

if (File.Exists(path))

File.SetLastWriteTime (path, DateTime.Now) ;

In the preceding example, you can see that a new parameter, FileInfo, is added to the cmdlet. In
addition, because we want users to be able to specify either a Path or a FileInfo parameter from the
command line, but not both, we put these two parameters into two different parameter sets, PathSet and
FileInfoSet, respectively.

Now the touch-file cmdlet can be executed with either a Path or a FileInfo parameter but not
both:

PS C:\user\gxie> touch-file -path c:\user\gxie\readme.txt
PS C:\user\gxie> $a = get-item c:\user\gxie\readme.txt

PS C:\user\gxie> touch-file -fileinfo $a
PS C:\user\gxie> touch-file -path c:\user\gxie\readme.txt -fileinfo $a

Touch-File : Parameter set cannot be resolved using the specified named parameters.
At line:1 char:11
+ touch-file <<<< -path c:\user\gxie\readme.txt -fileinfo $a

Default Parameter Sets

If you run the touch-file command with no arguments, you will get a parameter set resolution failure,
as shown here:

PS C:\user\gxie> touch-file

Touch-File : Parameter set cannot be resolved using the specified named parameters.
At line:1 char:11
+ touch-file

72

Chapter 4: Developing Cmdlets

In this case, both Pathset and FileInfosSet are valid candidate parameter sets, but the PowerShell
parameter binder is not able to decide which one to use. In this case, it makes sense for the parameter

binder to use a more common parameter set for parameter binding. The default parameter set is designed
for this purpose.

The following code illustrates how a default parameter set can be defined for a cmdlet:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "PathSet")]

public class TouchFileCommand : PSCmdlet
{

}

With this change, now you can execute the touch-file cmdlet again, with no arguments:
PS C:\user\gxie> touch-file
cmdlet touch-file at command pipeline position 1

Supply values for the following parameters:
Path:

The preceding example shows that the parameter binder has decided to use the default parameter set in
this ambiguous situation.

Parameters That Belong to Multiple Parameter Sets

It is possible to define parameters that belong to several different parameter sets. One common scenario
is for a parameter to belong to all parameter sets for the cmdlet. The parameter Date in the touch-file
cmdlet is an example of this:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "PathSet")]
public class TouchFileCommand : PSCmdlet

{

private string path = null;

[Parameter (ParameterSetName = "PathSet", Mandatory=true, Position=1)]

public string Path
{

}

private FileInfo fileInfo = null;

[Parameter (ParameterSetName = "FileInfoSet", Mandatory = true, Position = 1)]

public FileInfo FileInfo

73

Chapter 4: Developing Cmdlets

74

{
}
DateTime date = DateTime.Now;

[Parameter]
public DateTime Date
{

get

{

return date;

date = value;

}

protected override void ProcessRecord()

{
if (fileInfo != null)
{

fileInfo.LastWriteTime = date;
}

if (File.Exists (path))
{

File.SetLastWriteTime (path, date);

Date is an optional parameter that enables users to specify a different date for the file’s timestamp. If
this parameter is not specified, then the file timestamp will be updated to the current time as before.

It is obvious that this parameter applies to both cases: when the file information is specified through
path and when it is specified through FileInfo. Therefore, the Date parameter needs to be present on
both parameter sets. The preceding code does exactly that by not setting ParameterSetName for the Date
parameter, which means that this parameter applies to all parameter sets.

Now you can experiment with this enhanced version of the touch-file cmdlet. First, you can see that
this parameter applies to both parameter sets: PathSet and FileInfoSet:

PS C:\user\gxie> touch-file -path c:\user\gxie\readme.txt -date 1/1/2000

PS C:\user\gxie> dir

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\user\gxie

Chapter 4: Developing Cmdlets

Mode LastWriteTime Length Name

-a--- 1/1/2000 12:00 AM 420 readme.txt
PS C:\user\gxie> $a = get-item c:\user\gxie\readme.txt

PS C:\user\gxie> touch-file -fileinfo $a -date 2/1/2000

PS C:\user\gxie> dir
Directory: Microsoft.PowerShell.Core\FileSystem: :C:\user\gxie

Mode LastWriteTime Length Name

-a--- 2/1/2000 12:00 AM 420 readme.txt

Next, note that the Date parameter is optional. Because of its absence, the file’s timestamp will be updated
to the current time:

PS C:\user\gxie> touch-file -path c:\user\gxie\readme.txt
PS C:\user\gxie> dir

Directory: Microsoft.PowerShell.Core\FileSystem::C:\user\gxie

Mode LastWriteTime Length Name

-a--- 6/10/2007 2:14 PM 420 readme.txt

Finally, if the Date parameter is the only parameter specified on the command line, parameter binding
will default to the parameter set pathset, which has the same effect as not specifying the Date parameter
on the command line:

PS C:\user\gxie> touch-file -date 1/1/2000

cmdlet touch-file at command pipeline position 1
Supply values for the following parameters:
Path:

PS C:\user\gxie> touch-file

cmdlet touch-file at command pipeline position 1
Supply values for the following parameters:
Path:

Parameter Binding Related to Parameter Sets
PowerShell goes through the following phases to determine which parameter set to use during parameter
binding;:
0O Named parameter binding
Q Positional parameter binding

Q Pipeline parameter binding

75

Chapter 4: Developing Cmdlets

Na

This section discusses parameter set logic related to the first two phases. Pipeline parameter binding and
related parameter set decisions are discussed in the section “‘Processing Pipeline Input.”

med Parameter Binding

During this process, candidate parameter sets are narrowed down based on the parameter set to which
the named parameter belongs. If ultimately there is no valid candidate parameter set, a parameter set
resolution failure is reported.

The following example illustrates this process. Assume that the cmdlet Test-ParametersSetl has the
following parameters:

0 parama belongs to parameter set Setx and setY
0 paramB belongs to parameter set SetX

0 paramC belongs to parameter set Sety

Assume the following command:

PS C:\user\gxie> Test-ParameterSetl -ParamA argl -ParamB arg2 -ParamC arg3
Test-ParameterSetl : Parameter set cannot be resolved using the specified named param-
eters.

At line:1 char:18

+ Test-ParameterSetl <<<< -ParamA argl -ParamB arg2 -ParamC arg3

Parameter resolution fails because binding Parama results in the candidate parameter set to be setx and
Sety. Binding pParams will further limit the candidate parameter set to be setX only. Finally, when paramc
is bound, the parameter binder will find that it doesn’t belong to any candidate parameter set, thereby
resulting in the reported failure.

Positional Parameter Binding

76

Positional parameter binding is done after named parameter binding is completed. At the beginning

of positional parameter binding, named parameter binding has already limited valid parameter sets to
be one or more candidates. If there is only one valid parameter set, then parameters from that parameter
set are used for positional parameter binding.

If there is more than one candidate parameter set, then the list of unbound positional parameters is
built for each candidate parameter set. Then the first unbound positional parameters from the candidate
parameter set will be matched against the first unbound argument, and the most suitable first unbound
positional parameter will be chosen for binding (logic for deciding which one is most suitable is described
in the next paragraph).

Next, parameter set information for the chosen positional parameter is used to narrow down the number
of candidate parameter sets. Then the second unbound positional parameters from candidate parameter
sets are considered for binding (to second unbound arguments) and candidate parameter sets are further
narrowed down. This process continues until unbound positional parameters are exhausted. If conflicts

regarding parameter sets occur during this process, a parameter set resolution error is reported.

Chapter 4: Developing Cmdlets

The parameter binder decides on the most suitable unbound positional parameter based on the type of
unbound argument that is being bound with. Following is the sequence of logic used:

Q From the set of unbound positional parameters from different parameter sets, find the ones that
have exactly the same value type as the type of unbound argument:
Q If only one parameter is found, then that parameter is chosen.

Q If more than one parameter is found but one of them is from the default parameter set, then
the parameter from the default parameter set is chosen.

Q Otherwise, a random parameter is chosen from the list.

Q If no unbound positional parameters are found to have exactly the same value type as the type of
the unbound argument, find the ones that have value types that can be converted from the type
of the unbound argument:

Q If only one parameter is found, then that parameter is chosen.

Q If more than one parameter is found but one of them is from the default parameter set, then
the parameter from the default parameter set is chosen.

O Otherwise, a random parameter is chosen from the list.

To illustrate this process, let’s look at an example. Assume that cmdlet Test-ParameterSet2 has the
following parameter sets:

0 Parameter set SetX: This includes the following positional parameters (in order): Parama (of
type string), Params (of type int)

O Parameter set SetY: This includes the following positional parameters (in order): Parama (of
type string), ParamC (of type int)

Q Parameter set SetZ: This includes the following positional parameters (in order): ParambD (of
type object), Paramk (of type int)

In addition, assume that parameter set setX is the default parameter set. Now consider the following
command:

PS C:\user\gxie> Test-ParameterSet2 "string" 12
The first argument of this command is a string. The second argument of this command is an integer.

Before position parameter binding, all three parameter sets are valid candidates. You bind the first
unbound positional parameter, which can be either Parama (from Setx and SetY) or ParamD (from Setz).
Because Parama’s value type string exactly matches the type of the first unbound argument, it is chosen.
As a result, now the valid parameter sets are narrowed down to Setx and SetY only.

Now you bind the second unbound positional parameter, which can be either Params (from SetX) or
paramC (from SetY). Because both parameters take a value type of integer, the one from the default
parameter set is chosen. As a result, ParamB will be bound, and the candidate parameter sets is narrowed
down to SetX only.

77

Chapter 4: Developing Cmdlets

Please note that even after positional parameter binding it is possible for more than one parameter set to
be valid. In this case, the parameter binder will report a parameter resolution failure unless this command
takes pipeline input. If the command does take pipeline input (for example, if the command is the second
command in the pipeline), then the parameter binder will have another shot at resolving the parameter
set while binding pipeline inputs. This is discussed in the section “Processing Pipeline Input.”

Parameter Validation

78

Parameter validation enables validation logic to be added to verify the parameter value before it is bound
to a parameter. Parameter validation is specified through validation attributes defined on parameter
properties.

The following example uses the ValidateNotNullOrEmpty attribute in the Touch-File cmdlet:
[Cmdlet ("Touch", "File")]
public class TouchFileCommand : PSCmdlet
{ private string path = null;
[Parameter (ParameterSetName = "PathSet", Mandatory=true, Position=1)]

[ValidateNotNullOrEmpty]

public string Path
{

}

private FileInfo fileInfo = null;
[Parameter (ParameterSetName = "FileInfoSet", Mandatory = true, Position = 1)]
public FileInfo FileInfo

{

}

DateTime date = DateTime.Now;
[Parameter]

public DateTime Date

{

}

protected override void ProcessRecord()
{

}

Now, if you build and run the new touch-file cmdlet with an empty path as shown here:

PS C:\user\gxie> touch-file -path ""
Touch-File : The argument cannot be null or empty.

Chapter 4: Developing Cmdlets

At line:1 char:17
+ touch-file -path <<<< ""

an error is reported that the path parameter cannot be null or empty.
PowerShell provides a list of parameter validation attributes out-of-the-box, including the following:

0 validateNotNull: Validates that the parameter value is not null

ValidateRange: Validates that the integer parameter value is in a specified range
ValidateCount: Validates that the list parameter value has a number range of items
ValidateLength: Validates that the string parameter value has a range of string length
ValidateSet: Validates that the parameter value falls into a set specified

AllowNull: Allows the parameter value to be null

AllowEmptyString: Allows the string parameter value to be an empty string

O 000U 0d

AllowEmptyCollection: Allows the list parameter value to take an empty collection

Custom Parameter Validation Attributes

Cmdlet developers can develop their own custom validation attributes. This can be done by deriving
from the validateArgumentsAttribute class (directly or indirectly) and filling in logic for valida-
teElement

Following is an example that validates that a parameter value is an even number:

[AttributeUsage (AttributeTargets.Field | AttributeTargets.Property)]
public class ValidateEvenNumberAttribute : ValidateArgumentsAttribute

{
protected override void ValidateElement (object element)
{
if (element == null || !(element is int))
{
throw new ArgumentException("Invalid parameter value");

}
int 1 = (int) element;

if(i 2 !=0)
{
throw new ArgumentException("Not an even number.");

}

The Get-EvenNumber cmdlet illustrates how to use this validation attribute:

[Cmdlet ("Get", "EvenNumber")]
public class GetEvenNumberCommand : PSCmdlet
{

int number = 0;

79

Chapter 4: Developing Cmdlets

[Parameter (Mandatory=true)]

[ValidateEvenNumber]

public int Number
{

get

{

return number;

number = value;

}

protected override void ProcessRecord()

{
}

Now try running the Get-EvenNumber cmdlet with an odd argument value for the Number parameter:

PS C:\user\gxie> get-evennumber -number 13
Get-EvenNumber : Cannot validate argument on parameter 'Number'. Not an even num

Ber.

At line:1 char:23

+ get-evennumber -number <<<<

13

As you can see, an error is reported because even number validation failed.

Parameter Transformation

In cmdlet development, parameters can be defined as any .NET types, from simple types such as string,
int to complicated types such as System.Process. One common task, however, is to design the cmdlet
so that parameter values can be easily typed in from the command line.

80

For example, assume that you want to develop a cmdlet Unite-Rectangle, which calculates the union of
two rectangles:

Using System.Drawing;

[Cmdlet ("Unite", "Rectangle")]

public class UniteRectangleCommand :

{

PSCmdlet

Rectangle rectanglel = new Rectangle(0,0,0,0);

[Parameter (Mandatory = true, Position

public Rectangle Rectanglel

= 1)]

Chapter 4: Developing Cmdlets

return rectanglel;
rectanglel = value;

Rectangle rectangle2 = new Rectangle(0, 0, 0, 0);
[Parameter (Mandatory = true, Position = 2)]

public Rectangle Rectangle2

{
get
{

return rectangle2;

rectangle2 = value;

}

protected override void ProcessRecord()

{

WriteObject (Rectangle.Union(rectanglel, rectangle2));

You can see that both parameters Rectanglel and Rectangle2 have the type System.Drawing.
Rectangle. To specify rectangle values for these command parameters, you would have to create rect-
angle objects first (using the new-object cmdlet) and then pass them to the new cmdlet, as shown in the
following example:

PS C:\user\gxie> $rl = new-object system.drawing.rectangle 1,2,1,1
PS C:\user\gxie> $r2 = new-object system.drawing.rectangle 3,4,1,1
PS C:\user\gxie> Unite-Rectangle $rl $r2

s

Location : {X=1,Y=2}

Size : {Width=3, Height=3}
X 1
Y 2
width 3
Height 3
Left 1

81

Chapter 4: Developing Cmdlets

Top : 2
Right : 4
Bottom : 5

IsEmpty : False

The first command creates a rectangle object with the left-bottom corner set to (1,2). The second command
creates a rectangle object with the left-bottom corner set to (3,4). Both rectangles have a width and height
of 1. After the rectangles are united, the smallest rectangle that can cover them both has a left-bottom
corner of (1,2), with a width and a height of 3. The math works correctly, but having to create two rect-
angles beforehand is not desirable.

It would be nice to allow users to type a list, a string, or a hash table from the command line, which you
would automatically convert into rectangles. To achieve this, parameter transformation comes in handy.
Basically, a custom parameter transformation attribute can be defined with logic to convert parameter
values from one format (for example, list) to another format (for example, rectangle). Then the attribute
can be associated with a parameter so that this kind of transformation is done automatically during
parameter binding.

The following code illustrates a custom ListToRectangleConverterAttribute class for converting a list
into a rectangle:

Using System.Collection;
[AttributeUsage (AttributeTargets.Field | AttributeTargets.Property)]
public class ListToRectangleConverterAttribute : ArgumentTransformationAttribute
{ public override object Transform(EngineIntrinsics ei, object inputData)
{

object input = inputData;

if (input is PSObject)
input = ((PSObject)input) .BaseObject;

if (input is IList)
{
IList list = input as IList;

if (list.Count == 4)
{

return new Rectangle((int)list[0], (int)list[1],
(int)list[2], (int)list[31]);

}
return inputData;
}

In the preceding example, you can see that this class is derived from the ArgumentTransformation-
Attribute class. The bulk of the work for this class is overriding the Tranform method to transform
parameter values from one format to another. Inside the Tranform method, transformation is done

Chapter 4: Developing Cmdlets

selectively. More explicitly, you create a new rectangle object only if inputData is a list of four inte-
gers. Otherwise, inputData will be passed through as it is. This implementation is chosen so that you
don’t mistakenly convert inputData if it is already a Rectangle. In addition, passing through inputData
allows another parameter transformation attribute down the chain to also process the data.

Now, use this attribute in the Unite-Rectangle cmdlet:

[Cmdlet ("Unite", "Rectangle")]
public class UniteRectangleCommand : PSCmdlet
{
Rectangle rectanglel = new Rectangle(0,0,0,0);

[Parameter (Mandatory = true, Position = 1)]

[ListToRectangleConverter]

public Rectangle Rectanglel
{

Rectangle rectangle2 = new Rectangle(0, 0, 0, 0);
[Parameter (Mandatory = true, Position = 2)]

[ListToRectangleConverter]

public Rectangle Rectangle2
{

}

protected override void ProcessRecord()
{
WriteObject (Rectangle.Union (rectanglel, rectangle2));

Now you can run the new Unite-Rectangle cmdlet by simply passing in two lists:

PS C:\user\gxie> Unite-Rectangle (1,2,1,1) (3,4,1,1)

Location : {X=1,Y=2}

Size : {Width=3, Height=3}
X : 1

Y
width
Height
Left
Top
Right
Bottom :
IsEmpty : False

UG NN P WwN

83

Chapter 4: Developing Cmdlets

In addition, you can verify that directly passing a Rectangle object into either parameter will continue
to work:

PS C:\user\gxie> S$r2 = new-object system.drawing.rectangle 3,4,1,1
PS C:\user\gxie> Unite-Rectangle (1,2,1,1) $r2

Location : {X=1,Y=2}

Size : {wWwidth=3, Height=3}
X 1

Y 2
width 3
Height 3
Left 1
Top : 2
Right 4
Bottom 5
IsEmpty : False

In summary, this section described how to declare a parameter to be mandatory and positional, how to
use parameter sets, and how to validate and transform parameter values. In next section, you will learn
how to make a parameter take pipeline input values.

Processing Pipeline Input

84

One of most popular PowerShell features is pipelining objects from one command to another command.
For a cmdlet to be used in a pipeline, it needs to be able to handle pipeline input and generate pipeline
output. In this section, you will learn techniques to handle pipeline input in a cmdlet.

PowerShell cmdlets can bind pipeline input to a parameter and access the parameter in the Process-
Record() method of the cmdlet. The following example extends the touch-file cmdlet:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path")]
public class TouchFileCommand : PSCmdlet
{

[Parameter (ParameterSetName = "FileInfo", Mandatory = true, Position = 1,

ValueFromPipeline = true)]

public FileInfo FileInfo
{

get

{

return filelInfo;

fileInfo = value;

Chapter 4: Developing Cmdlets

protected override void ProcessRecord()
{

if (fileInfo != null)

{

fileInfo.LastWriteTime = date;

if (File.Exists(path))
{

File.SetLastWriteTime (path, date);

Comparing the preceding code with the example from the ““Parameter Validation” section, the only
change here is setting the ValueFromPipeline parameter to true for the FileInfo parameter. This
informs the PowerShell engine that the parameter FileInfo will bind to pipeline input in case it is not
specified from the command line.

Use the following to run this cmdlet:

PS C:\user\gxie> get-childitem *.txt | Touch-File -date 7/1/2007
PS C:\user\gxie> get-childitem *.txt

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\user\gxie

Mode LastWriteTime Length Name
-a--- 7/1/2007 12:00 AM 420 readme.txt
-a--- 7/1/2007 12:00 AM 420 readme?2.txt

In the first command of the preceding example, for each output object from get-childitem*.txt, the
PowerShell engine will bind the Touch-File cmdlet’s FileInfo parameter and call its ProcessRecord ()
method to update the timestamp of the file.

Cmdlets parameter can also bind to a property of a pipeline input object. Following is an example that
binds the path parameter to a property of the pipeline input object:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path")]
public class TouchFileCommand : PSCmdlet

{

private string path = null;
[Parameter (ParameterSetName = "Path", Mandatory=true, Position=1,

ValueFromPipelineByPropertyName = true)]
[Alias ("FullName")]

[ValidateNotNullOrEmpty]

85

Chapter 4: Developing Cmdlets

public string Path
{

get

{

return path;

path = value;

private FileInfo fileInfo = null;

[Parameter (ParameterSetName = "FileInfo", Mandatory = true, Position = 1)]
public FileInfo FileInfo
{
get
{
return filelInfo;
}
set
{
fileInfo = value;
}

DateTime date = DateTime.Now;

[Parameter]
public DateTime Date
{

get

{

return date;

date = value;

protected override void ProcessRecord()
{

if (fileInfo != null)

{

fileInfo.LastWriteTime = date;

if (File.Exists(path))

File.SetLastWriteTime (path, date);

86

Chapter 4: Developing Cmdlets

In this example, instead of letting the FileInfo parameter take its value from the pipeline, you set
TakeValueFromPipelineByPropertyName to be true for the parameter path. Furthermore, you define
the alias FullName for the parameter path. Now, if the pipeline input object has either a path property or
a FullName property, then that property value will be bound to the path parameter.

Run the touch-file command much as you did before:

PS C:\user\gxie> get-childitem *.txt | Touch-File -date 7/1/2007
PS C:\user\gxie> get-childitem *.txt

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\user\gxie

Mode LastWriteTime Length Name
-a--- 7/1/2007 12:00 AM 420 readme.txt
-a--- 7/1/2007 12:00 AM 420 readme?2.txt

You can see that the timestamp of both .txt files are updated. In this case, output of get-childitem
* . txt contains a property named FullName (as shown below), which is bound to the path parameter of
the touch-file cmdlet:

PS C:\user\gxie> get-childitem *.txt | get-member -membertype property

TypeName: System.IO.FileInfo

Name MemberType Definition

Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}

Exists Property System.Boolean Exists {get;}

Extension Property System.String Extension {get;}

FullName Property System.String FullName {get;}

IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}

Name Property System.String Name {get;}

Pipeline Parameter Binding

Cmdlet parameters can be bound either to command arguments from the command line or to input
objects from the pipeline. Command-line parameter binding happens once for each cmdlet invocation.
It is performed before the BeginProcessing () method of the cmdlet implementation class is called.

87

Chapter 4: Developing Cmdlets

Conversely, pipeline parameter binding happens once for each pipeline input object. It is performed
before each call to the ProcessRecord () method of the cmdlet class.

Similar to command-line parameter binding, pipeline parameter binding also needs to pick the parameter
to bind from valid parameter sets. It uses the following process to decide which parameter to bind first:

1.

Prepare parameter lists: Unbound pipeline parameters from valid parameter sets are
organized into two lists: One list (let’s call it valueFromPipeline) is for pipeline parameters
taking pipeline input (i.e., the ValueFromPipeline property of the parameter attribute is set
to true); another list (let’s call it ValudFromPipel ineByPropertyName) is for pipeline parame-
ters taking pipeline input by property name (i.e., ValueFromPipelineByPropertyName is set
to true). Pipeline parameters from default parameter sets are put at the beginning of these
two lists so that they are considered for binding first.

Bind next parameter: The pipeline parameter binder uses four steps to determine which
parameter to bind:

a. Bind parameters from the valueFrompPipeline list with no type conversion. In this
step, if one parameter from the list has exactly the same type as pipeline input object,
then it will be bound. Otherwise, parameter binding goes to the next step.

b. Bind parameters from the ValueFromPipelineByPropertyName list with no type con-
version. In this step, if one parameter from the list matches a property’s name of the
pipeline input object and the parameter type matches the property type, then this
parameter will be bound. Otherwise, parameter binding goes to the next step.

C. Bind parameters from the ValueFromPipeline list with type conversion. In this step,
if the pipeline input object can be converted into a type of parameter in the list, that
parameter will be bound. Otherwise, parameter binding goes to the next step.

d. Bind parameters from the ValueFromPipelineByPropertyName list with no type con-
version. In this step, if the name of one property of the pipeline input object matches
a parameter in the list and the property type can be converted to the parameter type,
this parameter will be bound.

Narrow down valid parameter sets: If there is a parameter bound in the preceding steps,
then parameter sets for the parameter bound will be used for narrowing down valid param-
eter sets. Then the pipeline binder will recalculate the unbound pipeline parameter list and
bind the next parameter. This process will continue until no parameter can be bound.

To illustrate the process of pipeline parameter binding, let’s expand the touch-file cmdlet to specify
that both path and FileInfo take their value from the pipeline:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path")]
public class TouchFileCommand : PSCmdlet

{

88

private string path = null;

[Parameter (ParameterSetName = "Path", Mandatory=true, Position=1,

ValueFromPipeline = true, ValueFromPipelineByPropertyName = true)]

[Alias ("FullName")]

Chapter 4: Developing Cmdlets

[ValidateNotNullOrEmpty]
public string Path
{

get

{

return path;

path = value;

private FileInfo fileInfo = null;

[Parameter (ParameterSetName = "FileInfo", Mandatory = true,

ValueFromPipeline = true)]

public FileInfo FileInfo
{

get

{

return fileInfo;

fileInfo = value;

DateTime date = DateTime.Now;

[Parameter]
public DateTime Date
{

get

{

return date;

date = value;

protected override void ProcessRecord()
{

if (fileInfo !'= null)

{

fileInfo.LastWriteTime = date;

Position = 1,

89

Chapter 4: Developing Cmdlets

20

if (File.Exists(path))
{

File.SetLastWriteTime (path, date);
}

Please note that the parameter Path is defined to take the value from either the pipeline object or a
property of the pipeline object. In the preparation stage of pipeline parameter binding, the two pipeline
parameter lists can be constructed as follows:

Q ValueFromPipeline List: Path, FileInfo
Q ValueFromPipelineByPropertyName List: Path

Now consider the following commands:

PS C:\user\gxie> $a = 'c:\user\gxie\readme.txt'
PS C:\user\gxie> $b = get-childitem readme2.txt
PS C:\user\gxie> $c = add-member -InputObject 0 -MemberType NoteProperty -Name P
ath -vValue 'c:\user\gxie\readme3.txt' -passThru

PS C:\user\gxie> $a,$b,$c | touch-file -date 7/1/2007

PS C:\user\gxie> get-childitem

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\user\gxie

Mode LastWriteTime Length Name

-a--- 7/1/2007 12:00 AM 420 readme.txt
-a--- 7/1/2007 12:00 AM 420 readme2.txt
-a--- 7/1/2007 12:00 AM 420 readme3l.txt

The first pipeline object is $a, which is a string. Because the type of the Path parameter is a string, it will
be bound to take the value of $a during the step of binding parameters from the valueFromPipeline list
with no type conversion. With this, the timestamp of file c: \user\gxie\readme. txt will be updated.

The second pipeline object is $b, which is of type FileInfo. This matches the type for parameter
FileInfo, FilelInfo, so this parameter will take the value of $b during the step of binding parameters
from the ValueFromPipeline list with no type conversion. With this, the timestamp of file ¢ : \user\gxie\
readme2. txt will be updated.

The third pipeline object is $c, which is a wrapped integer with a property named path. First, an attempt
to bind parameters from the ValueFromPipeline list will fail because neither parameter path nor
FileInfo is of type integer. During the step of binding parameters from the valueFromPipelineByProp-
ertyName list (with no type conversion), the Path parameter will be bound to a value of $c.Path because
of type match and name match. With this, the timestamp of file c:\user\gxie\readme3. txt will also be
updated.

Chapter 4: Developing Cmdlets

At this point, you know how to make a cmdlet handle command-line input and pipeline input through
command parameters. In the following sections, we discuss how to show cmdlet execution results to
users. This includes cmdlet output and cmdlet execution errors.

Generating Pipeline Output

PowerShell cmdlets can write objects to the output pipe by using the wWriteObject () method. The fol-
lowing example extends the Touch-File cmdlet to write FileInfo objects to the output pipe:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path")]
public class TouchFileCommand : PSCmdlet
{

private string path = null;

[Parameter (ParameterSetName = "Path", Mandatory=true, Position=1,
ValueFromPipeline = true, ValueFromPipelineByPropertyName = true)]
[Alias ("FullName")]
[ValidateNotNullOrEmpty]
public string Path
{
get
{

return path;

path = value;

}

private FileInfo fileInfo = null;

[Parameter (ParameterSetName = "FileInfo", Mandatory = true, Position = 1,
ValueFromPipeline = true)]

public FileInfo FileInfo

{
get
{

return fileInfo;

fileInfo = value;
}
DateTime date = DateTime.Now;

[Parameter]
public DateTime Date

921

Chapter 4: Developing Cmdlets

get

return date;

date = value;
}

protected override void ProcessRecord ()
{
if (fileInfo == null && File.Exists(path))
{
fileInfo = new FileInfo(path);
}

if (fileInfo != null)
{
fileInfo.LastWriteTime = date;

WriteObject (fileInfo);

With this change, downstream cmdlets can continue processing the object, as shown in the following
command:

PS C:\user\gxie> Get-ChildItem | Touch-File | Format-Table FullName, LastWriteTime

FullName LastWriteTime

c:\user\gxie\readme. txt 7/7/2007 1:51:26 PM
c:\user\gxie\readme?2.txt 7/7/2007 1:51:26 PM
c:\user\gxie\readme3.txt 7/7/2007 1:51:26 PM

Reporting Errors

Cmdlet execution can encounter exceptions from different sources, including the following;:

0 .NET common language runtime (or CLR) or PowerShell — for example, the out of memory
exception from CLR or the pipeline stopped exception from PowerShell

QO Cmdlet logic itself
0 Components on which the cmdlet depends

Cmdlets normally don’t need to be concerned about exceptions from the CLR or PowerShell. These kinds
of exceptions can be better handled by PowerShell. For exceptions from the other two sources, it is the
cmdlet’s responsibility to wrap the exceptions into error records and to report them.

92

Chapter 4: Developing Cmdlets

There are two kinds of errors in PowerShell:

Qa

Non-terminating errors: This kind of error is usually specific to the current pipeline object on
which the cmdlet is operating. As a result, the cmdlet can skip the current object and move on to
process the next object from the pipeline.

Terminating errors: This kind of error indicates an issue with the cmdlet that prevents it from
handling any pipeline objects. For example, the start-Service cmdlet depends on the ser-
vice controller for starting a service. If the service controller is not running, the Start-Service
cmdlet will not be able to start any service. As a result, the whole cmdlet needs to be stopped.

For normal shells, error handling focuses on reporting errors. PowerShell also allows analyzing and
acting upon the errors. Usually, errors during PowerShell command execution are accumulated into an
array. Then users can analyze the error, fix the problem, and resend the objects not processed through the
pipeline. To support this capability, PowerShell provides the ErrorRecord and ErrorDetail classes.

ErrorRecord

ErrorRecord is a class for providing information about errors that occurred during cmdlet execution. It
tracks the following information:

Q

Qa

Qa

Exception: This is the underlying exception that caused the error. It provides an error message,
call stacks, and so on to help diagnose the error.

Error category and Error ID: These provide categorization information to help search for and
group errors.

Target object: This is normally the current pipeline object. With this, you can determine which
pipeline objects were not successfully processed and need to be processed again.

InvocationInfo: This provides context about this error. It includes information such as the cmdlet,
the pipeline, and which line of a script file was being executed when the error happened.

To create an ErrorRecord object, just fill in information about the exception, error category, error ID, and
target object, as shown in the following example:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path")]

public class TouchFileCommand : PSCmdlet

{

private string path = null;

[Parameter (ParameterSetName = "Path", Mandatory = true, Position = 1,
ValueFromPipeline = true, ValueFromPipelineByPropertyName = true)]
[ValidateNotNullOrEmpty]
[Alias ("FullName")]
public string Path
{
get
{

return path;

path = value;

93

Chapter 4: Developing Cmdlets

94

private FileInfo fileInfo = null;

[Parameter (ParameterSetName = "FileInfo", Mandatory = true, Position = 1,
ValueFromPipeline = true)]

public FileInfo FileInfo

{
get
{

return filelInfo;

fileInfo = value;

DateTime date = DateTime.Now;

[Parameter]
public DateTime Date
{
get
{
return date;
}
set
{
date = value;
}
}
protected override void ProcessRecord()
{
FileInfo myFileInfo = fileInfo;
if (myFileInfo == null && File.Exists(path))
{
myFileInfo = new FileInfo(path);
}
if (myFileInfo != null)
{

try
{
myFileInfo.LastWriteTime = date;
}
catch (UnauthorizedAccessException uae)

{

ErrorRecord errorRecord = new ErrorRecord(uae,
"UnauthorizedFileAccess",
ErrorCategory.PermissionDenied,
myFileInfo.FullName) ;

Chapter 4: Developing Cmdlets

WriteError (errorRecord) ;
return;

WriteObject (myFileInfo);

There is no need to provide InvocationInfo during ErrorRecord construction. Information about that
will be filled in when the error record is reported.

Use the following to run this command:

PS C:\user\gxie> get-childitem readme.txt
Directory: Microsoft.PowerShell.Core\FileSystem: :C:\user\gxie

Mode LastWriteTime Length Name

-a--- 7/8/2007 6:49 PM 420 readme.txt

PS C:\user\gxie> get-childitem readme.txt | touch-file

Touch-File : Access to the path 'C:\user\gxie\readme2.txt' is denied.
At line:1 char:17
+ dir | touch-file <<<<

This reported error message is constructed from the exception message and InvocationInfo. The
optional InvocationInfo provides the line, character, and script block shown at the bottom of this
example error message.

ErrorDetails

Frequently, cmdlet developers find that error messages from the exception of the error record are too
general to help users understand and troubleshoot the issue. To resolve this, error details can be attached
to error records, as shown in the following example:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path")]
public class TouchFileCommand : PSCmdlet
{

protected override void ProcessRecord()

95

Chapter 4: Developing Cmdlets

FileInfo myFileInfo = fileInfo;

if (myFileInfo == null && File.Exists(path))
{
myFileInfo = new FileInfo (path);

if (myFileInfo != null)
{
try
{
myFileInfo.LastWriteTime = date;
}
catch (UnauthorizedAccessException uae)
{

ErrorRecord errorRecord = new ErrorRecord(uae,
"UnauthorizedFileAccess",
ErrorCategory.PermissionDenied,
myFileInfo.FullName) ;

string detailMessage = String.Format ("Not able to touch file
'{0}'. Please check whether it is readonly.",
myFileInfo.FullName) ;

errorRecord.ErrorDetails = new ErrorDetails (detailMessage) ;

WriteError (errorRecord) ;
return;

WriteObject (myFileInfo) ;

There are two ways to construct an ErrorDetails object. The simplest way is to directly construct the
object using a message string. A more complicated way is to construct the object based on a resource
string and some placeholder arguments. To support internationalization, using a resource string is
recommended.

Now if you run the command again, you will see that the message from the ErrorDetails object is
reported from the console:

PS C:\user\gxie> get-childitem readme.txt | touch-file

Touch-File : Not able to touch file 'C:\user\gxie\readme2.txt'. Please check
whether it is readonly.

At line:1 char:17

+ dir | touch-file <<<<

96

Chapter 4: Developing Cmdlets

Non-terminating Errors and Terminating Errors

To report non-terminating errors, the WriteError () method can be used as shown in the preceding
example. This will not stop the cmdlet from processing the next pipeline object, as shown in this
example:

PS C:\user\gxie> get-childitem

Directory: Microsoft.PowerShell.Core\FileSystem::C:\user\gxie

Mode LastWriteTime Length Name

-a--- 7/14/2007 6:49 PM 420 readme.txt
-ar-- 7/1/2007 12:00 AM 420 readme?2.txt
-a--- 7/14/2007 6:49 PM 420 readme3.txt

PS C:\user\gxie> get-childitem | touch-file

Mode LastWriteTime Length Name

-a--- 7/14/2007 6:49 PM 420 readme.txt

Touch-File : Access to the path 'C:\user\gxie\readme2.txt' is denied.
At line:1 char:17

+ dir | touch-file <<<<

-a--- 7/14/2007 6:49 PM 420 readme3.txt

Because readme2 . txt is read-only, the touch-file operation on it failed. However, this didn’t stop the
cmdlet from processing the next file, readme3 . txt.

If you change the preceding code to throw a terminating error using the ThrowTerminatingError ()
method, the command output will be different, as you can see with the following;:

PS C:\user\gxie> get-childitem | touch-file

Mode LastWriteTime Length Name

-a--- 7/14/2007 6:49 PM 420 readme.txt

Touch-File : Access to the path 'C:\user\gxie\readme2.txt' is denied.
At line:1 char:17

+ dir | touch-file <<<<

In the preceding example, you can see that readme3. txt is not processed after the terminating
error.

At this point, you have learned the core steps for creating a PowerShell cmdlet, including declaring
cmdlet parameters, handling pipeline input, generating output, and reporting errors.

97

Chapter 4: Developing Cmdlets

The next few sections cover several more advanced topics, including the following:

0O How to make high-impact cmdlets more user friendly by supporting Shouldprocess
0 How to make cmdlets to work with PowerShell paths and namespaces

QO How to create help content for cmdlets

Supporting ShouldProcess

Some cmdlet actions can be destructive. Therefore, users should be reminded about the possible conse-
quences of an action before it is performed. You can declare a cmdlet to support the Shouldprocess ()
method for this, as shown in the following example:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path",

SupportsShouldProcess = true, ConfirmImpact = ConfirmImpact.Medium)]

public class TouchFileCommand : PSCmdlet
{

protected override void ProcessRecord()
{
FileInfo myFileInfo = fileInfo;

if (myFileInfo == null && File.Exists(path))
{
myFileInfo = new FileInfo (path);

if (myFileInfo != null)
{

if (this.ShouldProcess (myFileInfo.FullName,

"set last write time to be " + date.ToString()))
{

try
{
myFileInfo.LastWriteTime = date;
}
catch (UnauthorizedAccessException uae)
{

ErrorRecord errorRecord = new ErrorRecord(uae,
"UnauthorizedFileAccess",
ErrorCategory.PermissionDenied,
myFileInfo.FullName) ;

string detailMessage = String.Format (

"Not able to touch file '{0}'. Please check whether
it is readonly.", myFileInfo.FullName) ;

98

Chapter 4: Developing Cmdlets

errorRecord.ErrorDetails = new ErrorDetails (detailMessage) ;

WriteError (errorRecord) ;
return;

}

WriteObject (myFileInfo);

The following steps can be used to make a cmdlet support Shouldprocess:

1. Declare the cmdlet to support ShouldProcess by setting the SupportsShouldProcess prop-
erty of the cmdlet attribute to true.

2. Optionally set a confirm impact level by using the ConfirmImpact property of the cmdlet
attribute. If this property is not set, then it defaults to Medium. You will learn more about con-
firming impact level in the next section.

3. Add logic to the code so that the ShouldProcess method is called before any destructive
action is performed.

Use the following to run the preceding cmdlet:
PS C:\user\gxie> get-childitem | touch-file -whatif

What if: Performing operation "set last write time to be 7/15/2007 5:25:55 PM" on Tar-
get "C:\user\gxie\readme.txt".
What if: Performing operation "set last write time to be 7/15/2007 5:25:55 PM" on Tar-
get "C:\user\gxie\readme2.txt".
What if: Performing operation "set last write time to be 7/15/2007 5:25:55 PM" on Tar-
get "C:\user\gxie\readme3.txt".

PS C:\user\gxie> get-childitem | touch-file -confirm

Confirm

Are you sure you want to perform this action?

Performing operation "set last write time to be 7/15/2007 5:46:24 PM" on Target
"C:\user\gxie\readme.txt".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"):a

Mode LastWriteTime Length Name

-a--- 7/15/2007 5:46 PM 420 readme.txt
-a--- 7/15/2007 5:46 PM 420 readme?2.txt
-a--- 7/15/2007 5:46 PM 420 readme3.txt

929

Chapter 4: Developing Cmdlets

Here, you can see that if the cmdlet is invoked with the -whatif parameter, then it will not perform the
action but just show information about what would have been performed if the -whatif parameter were
not specified.

When the touch-file cmdlet is called with the -confirm parameter, it prompts the user for a confirma-
tion before the action is performed.

Confirming Impact Level

Sometimes, we want the cmdlet to prompt for confirmation even when the -confirm parameter is not
specified. One way to do this is to set the confirm impact level of the cmdlet to be high. For example, you
can change the ConfirmImpact parameter level of the touch-file cmdlet as follows:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path",

SupportsShouldProcess = true, ConfirmImpact = ConfirmImpact.High)]

public class TouchFileCommand : PSCmdlet
{

}
Now if you run the cmdlet without the -confirm parameter, it will also prompt:

PS C:\user\gxie> get-childitem | touch-file

Confirm

Are you sure you want to perform this action?

Performing operation "set last write time to be 7/15/2007 5:46:24 PM" on Target
"C:\user\gxie\readme.txt".

[Y] Yes [A] Yes to All |[N] No [L] No to All [S] Suspend [?] Help

(default is "Y"):a

Mode LastWriteTime Length Name

-a--- 7/15/2007 5:46 PM 420 readme.txt
-a--- 7/15/2007 5:46 PM 420 readme?2.txt
-a--- 7/15/2007 5:46 PM 420 readme3.txt

How does PowerShell decide when to prompt for confirmation? It determines whether to prompt by
comparing the following:

0 Confirm preference level: This is set in the session variable $Confirmpreference. (The value
of this variable is High by default.)

QO Confirm impact level: This is set in the cmdlet declaration. (By default, this level is Medium.)

If the confirm impact level of the cmdlet is equal to or higher than the confirm preference level, it will
prompt. If a cmdlet is invoked with the —confirm parameter, PowerShell will temporarily set the confirm
preference level to be Low. This will cause prompting for all cmdlets except the ones that declare the
confirm impact level to be None.

100

Chapter 4: Developing Cmdlets

Setting $ConfirmPreference to be None will suppress all prompting related to the Shouldprocess:

PS C:\user\gxie> $ConfirmPreference = 'None'
PS C:\user\gxie> get-childitem | touch-file

Mode LastWriteTime Length Name

-a--- 7/15/2007 5:46 PM 420 readme.txt
-a--- 7/15/2007 5:46 PM 420 readme2.txt
-a--- 7/15/2007 5:46 PM 420 readme3.txt

How do you prompt for confirmation regardless of confirm preference levels and confirm impact levels?
To do this, you can use ShouldContinue ().

ShouldContinue()

ShouldContinue () allows a cmdlet to prompt unconditionally for confirmation. To prompt

during ShouldContinue () calls, PowerShell doesn’t consult confirm preference levels from the envi-
ronment or confirm impact levels for the cmdlet. Actually, a cmdlet doesn’t even have to declare Sup-
portsShouldProcess to use ShouldContinue ().

Usage of shouldContinue is very similar to ShouldProcess. Extending the preceding touch-file cmdlet
example, you can simply change the shouldprocess () call to a ShouldContinue () call to make it work,
although we will not go through the details here.

Working with the PowerShell Path

There is a fundamental problem with the touch-file cmdlet we have so far. If a file path doesn’t exist,
we will simply fail silently. Consider the following example:

PS C:\user\gxie> get-childitem

Mode LastWriteTime Length Name

-a--- 7/15/2007 5:46 PM 420 readme.txt
-a--- 7/15/2007 5:46 PM 420 readme?2.txt
-a--- 7/15/2007 5:46 PM 420 readme3.txt

PS C:\user\gxie> touch-file junk.txt

PS C:\user\gxie>

To fix this, you can change the touch-file cmdlet implementation to report an error record if the file
doesn’t exist, as shown here:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path",

SupportsShouldProcess = true, ConfirmImpact=ConfirmImpact.Medium)]
public class TouchFileCommand : PSCmdlet

101

Chapter 4: Developing Cmdlets

protected override void ProcessRecord ()

{
FileInfo myFileInfo = fileInfo;
if (myFileInfo == null)
{

if (File.Exists(path))

{
myFileInfo = new FileInfo(path);

}
else
{
string fullPath = System.IO.Path.GetFullPath(path);
string message = String.Format("File '{0}' is not found",
fullPath) ;
ArgumentException ae = new ArgumentException (message) ;
ErrorRecord errorRecord = new ErrorRecord(ae,
"FileNotFound",
ErrorCategory.ObjectNotFound,
fullPath) ;
WriteError (errorRecord) ;
return;
}

For clarity, you can print the full path for the file in the error message. Now run the command again with
a non-existing file:

PS C:\user\gxie> touch-file junk.txt

Touch-File : File 'C:\Documents and Settings\gxie\My Documents\junk.txt' is not
found

At line:1 char:11

+ touch-file <<<< junk.txt

You can see that an error record is reported, but why is junk.txt resolving to C:\Documents and
Settings\gxie\My Documents\junk.txt instead of c:\user\gxie\junk.txt ? Now try running the
touch-file cmdlet on an existing file:

PS C:\user\gxie> touch-file readme.txt

Touch-File : File 'C:\Documents and Settings\gxie\My Documents\readme.txt' is not

102

Chapter 4: Developing Cmdlets

found
At line:1 char:11
+ touch-file <<<< Jjunk.txt

It still fails because file resolution is not based on the current PowerShell directory. Instead, it used the
current working directory (which is C:\Documents and Settings\gxie\My Documents\) when PowerShell

started.

To resolve this issue, file resolution needs to be based on the current PowerShell path. This can be done
using the GetResolvedProviderPathFromPSPath () method for file path resolution, as shown in the
following example code:

[Cmdlet ("Touch", "File", DefaultParameterSetName = "Path", SupportsShouldProcess =
true, ConfirmImpact=ConfirmImpact.Medium)]
public class TouchFileCommand : PSCmdlet

{

private string path = null;

[Parameter (ParameterSetName = "Path", Mandatory = true, Position = 1,
ValueFromPipeline = true, ValueFromPipelineByPropertyName = true)]

[ValidateNotNullOrEmpty]
[Alias ("FullName")]
public string Path
{

get

{

return path;

path = value;

private FileInfo fileInfo = null;

[Parameter (ParameterSetName = "FileInfo", Mandatory = true,
ValueFromPipeline = true)]

public FileInfo FileInfo

{
get
{

return fileInfo;

fileInfo = value;

DateTime date = DateTime.Now;

[Parameter]

Position = 1,

103

Chapter 4: Developing Cmdlets

public DateTime Date
{

get

{

return date;

date = value;

protected override void ProcessRecord()
{
if (fileInfo != null)
{
TouchFile(fileInfo) ;
return;

ProviderInfo provider = null;
Collection<String> resolvedPaths = GetResolvedProviderPathFromPSPath (path,
out provider) ;

foreach (string resolvedPath in resolvedPaths)

{
if (File.Exists(resolvedPath))
{
FileInfo myFileInfo = new FileInfo(resolvedPath) ;
TouchFile (myFileInfo);
}
else
{
string message = String.Format("File '{0}' is not found",
resolvedPath) ;
ArgumentException ae = new ArgumentException (message);
ErrorRecord errorRecord = new ErrorRecord(ae,
"FileNotFound",
ErrorCategory.ObjectNotFound,
resolvedPath) ;
WriteError (errorRecord) ;
return;
}
}

private void TouchFile(FileInfo myFileInfo)

{
if (myFileInfo != null)

104

Chapter 4: Developing Cmdlets

if (this.ShouldProcess (myFileInfo.FullName,
"set last write time to be " + date.ToString()))

try
{
myFileInfo.LastWriteTime = date;
}
catch (UnauthorizedAccessException uae)
{

ErrorRecord errorRecord = new ErrorRecord(uae,
"UnauthorizedFileAccess",
ErrorCategory.PermissionDenied,
myFileInfo.FullName) ;

string detailMessage = String.Format ("Not able to touch file
'{0}'. Please check whether it is readonly.",
myFileInfo.FullName) ;

errorRecord.ErrorDetails = new ErrorDetails(detailMessage);

WriteError (errorRecord) ;
return;

}

WriteObject (myFileInfo) ;

The preceding code also moves the logic for updating the file’s timestamp into its own private method.
Now run the touch-file command directly passing in a readme. txt:

PS C:\user\gxie> touch-file readme.txt

Mode LastWriteTime Length Name

-a--- 7/15/2007 7:41 PM 420 readme.txt

It works. Please also note that the GetResolvedProviderPathFromPSPath () method not only expands
the PowerShell file path from a relative path into an absolute path, it also performs pattern matching on
wildcards in the file path. (This is the reason why GetResolvedProviderPathFromPSPath () returns a list
of file paths instead of one file path.) Try this out as follows:

PS C:\user\gxie> touch-file readme*.txt

Mode LastWriteTime Length Name

-a--- 7/15/2007 7:41 PM 420 readme.txt
-a--- 7/15/2007 7:41 PM 420 readme?2.txt
-a--- 7/15/2007 7:41 PM 420 readme3.txt

105

Chapter 4: Developing Cmdlets

You can see that the touch-file cmdlet gets globbing behavior for free when you use GetResolved-
ProviderPathFromPSPath () for file path resolution.

Documenting Cmdlet Help

The last, but important, step of cmdlet development is documenting the cmdlet so that users can be better
informed about its usage through the Get-Help cmdlet. PowerShell provides a standard help format for
all cmdlets so that cmdlet developers can focus on the content of help.

Your first step is to create a help file. The name of the help file should be the snap-in d11 name followed
by the -help.xml extension. For example, if your Touch-File cmdlet were compiled into the assembly
TouchFileSnapin.dll, the help file should be TouchFileSnapin.dll-help.xml.

Now let’s look at the contents of this file:

106

<?xml version="1.0" encoding="utf-8" ?>

<helpItems schema="maml">

<command : command xmlns:maml="http://schemas.microsoft.com/maml/2004/10"
xmlns:command="http://schemas.microsoft.com/maml/dev/command/2004/10"

xmlns:dev="http://schemas.microsoft.com/maml/dev/2004/10">

<!-- Cmdlet detail section-->

<command:details>

<command : name>

Touch-File
< /command : name>
<maml :description>

<maml :para>Update timestamp of a file</maml:para>
</maml :description>
<maml : copyright>

<maml :para></maml:para>
</maml : copyright>
<command: verb>Touch</command:verb>
<command:noun>File</command:noun>
<dev:version></dev:version>

</command:details>
<maml :description>

<maml : para>
The Touch-File cmdlet updates timestamp of a file to current time or
the time specified on command line.

</maml :para>

</maml :description>

<!-- Cmdlet syntax section-->

<command:syntax>

<command: syntaxItem>
<maml :name>Touch-File</maml : name>
<command:parameter required="true" variableLength="true"

Chapter 4: Developing Cmdlets

globbing="true" pipelineInput="true (ByValue)" position="1">
<maml :name>Path</maml :name>
</command:parameter>
<command:parameter required="false" variableLength="false"
globbing="false" pipelineInput="false" position="named">
<maml :name>Date</maml : name>
</command:parameter>
</command: syntaxItem>
<command: syntaxItem>
<maml : name>Touch-File</maml : name>
<command:parameter required="true" variableLength="false"
globbing="false" pipelineInput="true" position="1">
<maml :name>FileInfo</maml :name>
< /command:parameter>
<command:parameter required="false" variableLength="false"
globbing="false" pipelineInput="false" position="named">
<maml :name>Date</maml : name>
< /command:parameter>
< /command: syntaxItem>
</command:syntax>

<!-- Cmdlet parameter section -->

<command:parameters>
<command:parameter required="true" variableLength="true" globbing="true"
pipelineInput="true (ByValue)" position="1">
<maml :name>Path</maml :name>
<maml :description>
<maml : para>
Path to the file whose timestamp will be updated.
</maml :para>
</maml :description>
<command:parameterValue required="true" variableLength="true">
String
</command:parameterValue>
<dev:type>
<maml :name>String</maml :name>
<maml:uri/>
</dev:type>
<dev:defaultValue></dev:defaultValue>
</command:parameter>
<command:parameter required="true" variableLength="false" globbing="false"
pipelineInput="true" position="1">
<maml :name>FileInfo</maml :name>
<maml:description>
<maml : para>
FileInfo object for the file whose timestamp will be updated.
</maml :para>
</maml:description>
<command:parameterValue required="false" variableLength="false">
System.IO.FileInfo
< /command:parameterValue>
<dev:type>
<maml :name>System.I0.FileInfo</maml :name>
<maml :uri/>

107

Chapter 4: Developing Cmdlets

</dev:type>
<dev:defaultValue></dev:defaultValue>
< /command:parameter>
<command:parameter required="false" variableLength="false" globbing="false"
pipelineInput="false" position="named">
<maml :name>Date</maml : name>
<maml :description>
<maml :para>
New timestamp for the file. If this parameter is not specified,
it will default to current time.
</maml :para>
</maml :description>
<command:parameterValue required="false" variableLength="false">
DateTime
< /command:parameterValue>
<dev:type>
<maml :name>System.DateTime</maml : name>
<maml:uri/>
</dev:type>
<dev:defaultValue>System.DateTime.Now</dev:defaultValue>
< /command:parameter>
</command:parameters>

<!-- Input - Output section-->

<command: inputTypes>
<command: inputType>
<dev:type>
<maml :name>System. String</maml :name>
<maml :uri/>
<maml :description>
<maml : para>
<!-- description -->
String input will be bound to -Path parameter of
Touch-File cmdlet.
</maml :para>
</maml :description>
</dev:type>
<maml :description></maml:description>
< /command: inputType>
<command: inputType>
<dev:type>
<maml :name>System.IO.FileInfo</maml:name>
<maml :uri/>
<maml :description>
<maml :para>
<!-- description -->
FileInfo object input will be bound to -FileInfo parameter
of Touch-File cmdlet.
</maml :para>
</maml:description>
</dev:type>
<maml :description></maml:description>
< /command: inputType>
</command: inputTypes>

108

Chapter 4: Developing Cmdlets

<command: returnvValues>
<command:returnValue>
<dev:type>
<maml :name>System.IO.FileInfo</maml:name>
<maml :uri/>
<maml :description>
<maml : para>
<!-- description -->
FileInfo object will be write the output pipe.
</maml :para>
</maml :description>
</dev:type>
<maml :description></maml:description>
</command:returnValue>
</command:returnvalues>
<command: terminatingErrors />
<command:nonTerminatingErrors />

<!-- Notes section -->

<maml:alertSet>
<maml:title></maml:title>
</maml:alertSet>
<!-- Example section -->
<command: examples>
<command : example>
<maml:title>

</maml:title>
<maml : introduction>
<maml :para>C:\PS></maml :para>
</maml:introduction>
<dev:code>Touch-File readme.txt</dev:code>
<dev:remarks>
<maml : para>
This command will update timestamp of readme.txt file
to current time.
</maml :para>
<maml :para></maml :para>
<maml :para></maml:para>
<maml :para></maml :para>
</dev:remarks>
<command : commandLines>
<command : commandLine>
<command : commandText > < /command : commandText >
< /command : commandLine>
< /command: commandLines>
< /command: example>
<command: example>
<maml:title>

</maml:title>
<maml :introduction>

<maml :para>C:\PS></maml :para>
</maml :introduction>

109

Chapter 4: Developing Cmdlets

<dev:code>Touch-File readme.txt -date 1/1/2007 </dev:code>
<dev:remarks>
<maml : para>
This command will update timestamp of readme.txt file to
January lst of 2007.
</maml :para>
<maml : para></maml :para>
<maml :para></maml:para>
<maml : para></maml :para>
</dev:remarks>
<command : commandLines>
<command : commandLine>
<command: commandText></command : commandText>
</command: commandLine>
< /command: commandLines>
</command : example>
<command: example>
<maml:title>

</maml:title>
<maml : introduction>
<maml :para>C:\PS></maml :para>
</maml:introduction>
<dev:code>Touch-File *.txt -date 1/1/2007 </dev:code>
<dev:remarks>
<maml : para>
This command will update timestamp of all *.txt file in current
directory to January lst of 2007.
</maml:para>
<maml :para></maml :para>
<maml :para></maml:para>
<maml :para></maml :para>
</dev:remarks>
<command : commandLines>
<command : commandLine>
<command : commandText></command : commandText >
</command: commandLine>
< /command : commandLines>
< /command: example>
<command: example>
<maml:title>

</maml:title>
<maml :introduction>
<maml :para>C:\PS></maml:para>
</maml : introduction>
<dev:code>Get-ChildItem *.txt | Touch-File -date 1/1/2007 </dev:code>
<dev:remarks>
<maml :para>
Similiar to example 3, this command will update timestamp of
all *.txt file in current directory to January lst of 2007.
</maml :para>
<maml :para></maml:para>
<maml : para></maml :para>
</dev:remarks>

110

Chapter 4: Developing Cmdlets

<command : commandLines>
<command : commandLine>
<command : commandText> < /command : commandText >
< /command: commandLine>
< /command: commandLines>
</command: example>
</command: examples>

<!-- Link section -->

<maml :relatedLinks>
<maml :navigationLink>
<maml :1inkText>Get-ChildItem</maml:linkText>
<maml :uri/>
</maml :navigationLink>
</maml :relatedLinks>
< /command : command>

</helpItems>

You can see that the help file is an XML file following the MAML schema. The content of a cmdlet help
file contains several sections:

O Cmdlet detail: This section contains the cmdlet’s name and a general description of the cmdlet.

O Cmdlet syntax: This section describes usage syntaxes for the cmdlet. Each parameter set of the
cmdlet will translate to a syntax item in this section.

0 Cmdlet parameter: This section has detailed information about the cmdlet’s parameters.

O Input-Output: This section describes what types of input are expected by the cmdlet and what
type of output will be generated by cmdlet.

0 Notes: This section is mainly for remarks and examples.

0 Links: This section refers to related help topics.
You can deploy this file (TouchFileSnapin.dll-help.xml) to be in the same directory as TouchFile-
Snapin.dll (or, if this file is localized, put it under a language subdirectory). That way, it will automati-

cally be picked up by PowerShell’s help system.

Following is the output for running the get-help Touch-File:

PS C:\> get-help touch-file -full

NAME

Touch-File

SYNOPSIS

Update timestamp of a file

111

Chapter 4: Developing Cmdlets

SYNTAX
Touch-File [-Path] [-Date] [<CommonParameters>]
Touch-File [-FileInfo] [-Date] [<CommonParameters>]

DETAILED DESCRIPTION

The Touch-File cmdlet updates timestamp of a file to current time or the ti
me specified on command line.

PARAMETERS

-Path <String>
Path to the file whose timestamp will be updated.

Required? true
Position? 1

Default value

Accept pipeline input? true (ByValue)

Accept wildcard characters? true

-FileInfo [<System.IO.FileInfo>]
FileInfo object for the file whose timestamp will be updated.

Required? true
Position? 1
Default value

Accept pipeline input? true

Accept wildcard characters? false

-Date [<DateTime>]
New timestamp for the file. If this parameter is not specified, it will
default to current time.

Required? false
Position? named
Default value System.DateTime.Now
Accept pipeline input? false

Accept wildcard characters? false

<CommonParameters>
This cmdlet supports the common parameters: -Verbose, -Debug,
-ErrorAction, -ErrorVariable, -OutBuffer and -OutVariable. For more
information, type, "get-help about_commonparameters".

INPUT TYPE

System.String

112

Chapter 4: Developing Cmdlets

System.IO.FileInfo

RETURN TYPE

System.IO.FileInfo

NOTES

C:\PS>Touch-File readme.txt

This command will update timestamp of readme.txt file to current time.

C:\PS>Touch-File readme.txt -date 1/1/2007

This command will update timestamp of readme.txt file to January lst of
2007.

C:\PS>Touch-File *.txt -date 1/1/2007

This command will update timestamp of all *.txt file in current directory
to January lst of 2007.

C:\PS>Get-ChildItem *.txt | Touch-File -date 1/1/2007

Similiar to example 3, this command will update timestamp of all *.txt file
in current directory to January lst of 2007.

113

Chapter 4: Developing Cmdlets

This is an example of binding -FileInfo parameter of Touch-File cmdlet to
pipeline object

RELATED LINKS

Get-ChildItem

As shown in the preceding example, different sections of help output roughly correspond to sections in
the help file.

Best Practices for Cmdlet Development

The goal of cmdlet development is to release a useful cmdlet to users. In this section, we discuss some
best practices for cmdlet development to make the cmdlet user’s life easier.

Naming Conventions

The most visible part of a cmdlet is its name (which include a verb and a noun) and related syntax. Since
cmdlet users can literally get thousands of cmdlets from different vendors, it is important to name cmdlet
verbs, nouns, and parameters consistently. That enables the usage of cmdlets to become more intuitive.

Cmdlet Verb Name

The ecmdlet verb, when chosen carefully, can provide a clear indication of what the cmdlet does. Con-
versely, if the verb is not chosen properly, it can be very confusing to cmdlet users. Because of this, the
PowerShell team has compiled a list of recommended verbs, which are available in Appendix B of this
book. Following are some general guidelines:

O Select verbs from the recommended list if possible.

0 Avoid using synonyms of verbs in the recommended list.

0O When developing a set of cmdlets related with one noun (for example, get-service and set-
service), select verbs from related verbsets in the recommended list.

Cmdlet Noun Name
The cmdlet noun describes the data that the cmdlet is processing. As with the cmdlet verb, the cmdlet
noun needs to be descriptive and avoid confusion with other domains. Following are some guidelines
from the PowerShell team regarding the naming of nouns:
O Always use the singular version of a noun — for example, use get-user instead of get-users.

0 Use Pascal case for nouns in the cmdlet declaration. Even though PowerShell is case insensitive,
it will preserve the cmdlet name casing when presenting information about the cmdlet. Using
Pascal case will help users to understand more sophisticated cmdlet names.

O Avoid using abbreviations in the cmdlet noun.

114

Chapter 4: Developing Cmdlets

Cmdlet Parameter Name

As with the cmdlet noun, the cmdlet parameter name should be Pascal-cased. In addition, parameters
should not use names already used by PowerShell for common parameters, including the following:

Q

U 00U 000U

Debug
Verbose
ErrorAction
Whatlf
Confirm
OutVariable
ErrorVariable

OutBuffer

The cmdlet verb, noun, and parameter names should not use any of following special characters: #, ()
(H1&-/\$;:"" <> |?@"

Interactions with the Host

The cmdlet should not directly read input from and write output to the console using the System.Console
class for following reasons:

Qa

a

The PowerShell cmdlet may execute in a console host environment. The PowerShell engine can
be hosted in a graphical shell or in a service application. In either case, there is no console.

Directly reading input from and writing output to the console may interfere with the Power-
Shell command-line host, which has its own specific sequence for reading input and writing
output.

Instead, the cmdlet should depend on the following cmdlet user feedback APIs for interacting with
end users:

Q

Q

ShouldProcess/ShouldContinue: As mentioned earlier, this enables the end user to decide
whether to perform an action.

WriteDebug: This will write some debug information to the PowerShell host. By default, this
information is not displayed unless the cmdlet is invoked with the -debug option or $debug-
preference is set not to be SilentlyContinue.

WriteVerbose: This will write some verbose information to the PowerShell host. By default, this
information is not displayed unless the cmdlet is invoked with the -verbose option or $ver-
bosepreference is set not to be SilentlyContinue.

WriteWarning: This will write some warning information to the PowerShell host. By default, this
information is displayed but it can be turned off by setting $warningpreference to Silently-
Continue.

WriteProgress: This will write processing progress information to the PowerShell host. By default,
this information is displayed but it can be turned off by setting $progresspreference to Silent-
lyContinue.

WriteError: As described earlier, this will write error messages to the PowerShell host.

115

Chapter 4: Developing Cmdlets

If these user feedback APIs are not sufficient, you can directly use host APIs, as shown in the following
code snippet:

[Cmdlet ("Test", "Host"]
public class TestHostCommand : PSCmdlet
{

protected override void ProcessRecord ()

{

if (this.Host != null)
{
this.Host.UI.WriteLine ("message") ;

}

Nonetheless, it is highly recommended that you consider user feedback APIs first. For details about APIs,
please see Chapter 6 and Chapter 7.

Summary

This chapter has described different aspects of writing a basic cmdlet, including defining cmdlet param-
eters, handling pipeline input, generating pipeline output, and reporting cmdlet execution errors. Also
described in this chapter were more advanced topics, including supporting shouldprocess, working
with the PowerShell path, and providing help content for cmdlets. At the end of the chapter, you learned
about some best practices for cmdlet development.

A special group of cmdlets in PowerShell are used for navigating and manipulating data stores. Examples
of these cmdlets include get-location, get-childitem, remove-childitem, and more. A goal of Power-
Shell is to use this common set of cmdlets to manage different kinds of data stores. Even better, you can
make these cmdlets work with your own special data store. To achieve this, all you need to do is write a
PowerShell provider with logic for accessing your data store. This is the topic of the next chapter.

116

Providers

Provider is a common term used in computer science to describe a service or interface for accessing
some form of data. ADO.NET, for example, is a data provider model for accessing databases. It
presents a consistent interface for accessing the rows and tables in the database. By implementing
a data provider for a particular database or backend data store, applications can access the data in
the same way, regardless of how the data is stored in the backend. This enables the business logic of
an application to decouple itself from the details of which database it’s accessing — at least, that’s
the theory.

In the case of PowerShell, providers present consistent interfaces via the provider cmdlets to custom
data stores. There are several types of providers in PowerShell and developers must choose which
one to use for controlling access to their data store.

Each provider interface or base class is an abstraction of the relationships of the data and the opera-
tions performed on that data. Different types of data storage present their own unique complexities
and thus have different patterns of usage. This has led to several different interfaces and classes that
you can derive from when implementing your provider. How you want your data to be accessed
will dictate what interfaces you implement.

Like cmdlets, providers are compiled into a .NET assembly and included in your PowerShell ses-
sion via snap-ins. Unlike cmdlets, however, once the add-pssnapin command is executed, any
providers in that snap-in are initialized and added. See Chapter 2 for information about how to
create a snap-in containing your provider.

This chapter explains how to write a provider and describes the multiple design decisions that affect
which interfaces or features to implement. For overall information regarding how providers work,
execute the command get-help about_provider.

This chapter is comprised of several sections that take a layer-based approach to explaining how
to develop a provider. The example providers are covered in the order of least complex to most
complex. Each of the different provider types is demonstrated with a sample XML provider that

Chapter 5: Providers

ultimately enables you to navigate, copy, or remove nodes from an XML document you map as a
PSDrive. We also use a stripped down filesystem provider to illustrate the property and content provider
interfaces.

Note that the CD for this book contains several sample providers. Some of the methods from them are
discussed throughout this chapter.

Why Implement a Provider?

The same cmdlets used to access the file system and Registry (get-item, set-location, new-psdrive,
get-property) are used to access your provider’s internal data. The differences lie in which provider
class you derive from, which affects what cmdlets actually work with your provider. Data comes in all
different flavors, but when you consider it at a higher level, a few fundamental questions group similar
forms of data storage together, such as the following:

Q Isyour data store hierarchical or flat?
0 Canyou navigate through your data store like a file system?

O Do the items in your store have properties or content associated with them or is the location the
only piece of critical information?

In addition to these, there are other questions to address, and the goal of this chapter is to help you
answer them for your specific needs. Because users will already have an understanding of how the
provider cmdlets work for the standard PowerShell providers, they will easily be able to begin using
your provider at a much more efficient level. In addition, this enables you to take advantage of all
the other great things PowerShell provides, such as streaming objects through the pipeline, consistent
formatting and output, scripts, functions, and more.

One of PowerShell’s great features is the capability it provides to call methods and properties on .NET
objects directly. This may tempt you to simply expose the objects from your data store and have users
call methods and properties on them directly. This could work, but you wouldn’t be taking advantage of
all the work the provider infrastructure does for you and how the provider cmdlets fit in with the rest
of PowerShell.

Providers versus Cmdlets

Why not just write a bunch of cmdlets for accessing objects and/or data? You could do that, but it would
end up being more work in the long run and it wouldn’t provide a seamless user experience. By imple-

menting a PowerShell provider, you don’t have to worry about parsing parameters, which parameters to
expose, or what cmdlets to create. It takes a fair amount of design and work to create a set of consistent,
intuitive cmdlets, and that’s exactly what the PowerShell team has done with the provider cmdlets.

Here’s a fun exercise you can perform to determine whether the provider model is right for you. As
you already know, cmdlets follow a verb-noun syntax. Write down the cmdlets you would need based
on how you want to expose your objects. Most likely you'll have a set-xyz and a get-xyz. You might
even have a move-xyz and a remove-xyz. Now type the command get-command *-item. If you see a lot of

118

Chapter 5: Providers

matches with the verbs, and the only difference is the noun part, then implementing a provider is the way
to go. If you have some leftover cmdlets that are not covered, such as for accessing items like data rows
or things like configuration settings, keep in mind that you also have *-itemproperty and *-content
cmdlets as well, which provide even more ways of accessing a provider’s data. In fact, the Windows
PowerShell SDK includes an example of an Access database provider that may prove insightful if you
have some database objects you want to interact with.

Some examples of good candidates for a provider include the following;:

XML documents (we build an XML provider from the ground up in this chapter)

Any management or configuration application involving network topology or browsing
Active Directory (which is our most popular request ©)

File system

Registry

DOM-style interfaces (e.g., Web pages and COM interfaces for Microsoft Office documents)
Window /GUI control browser

0O U0 U0douo0U oo

Browsing .NET assemblies
Basically, anything hierarchical in nature fits well.

Hierarchical data is not a requirement, though. Flat data schemes are just as useful when exposed through
PowerShell providers. In fact, several of the built-in providers for PowerShell are flat name-value pair
containers. This includes functions, aliases, and variables, so anything name-value pair-based could

fit under the provider umbrella also. Maybe you want to create a hashtable on steroids; someday that
hashtable might break the all-time home run record!

Essential Concepts

The following sections describe a couple of concepts that apply to all the provider types. They are used
so often it makes sense to discuss them before proceeding.

Paths

Paths are used to locate the items in your provider. It is extremely important to understand the different
types of paths that can exist for a provider, as this will make developing your provider much easier. The
path specified by the user may indicate which provider to use or it may indicate a location for the current
provider.

Thinking of paths as analogous to file system paths will help you understand them better at first.
However, keep in mind that providers other than yours may have a different path syntax that needs to be
handled. The PowerShell providers support both the backslash (“\"’) and the forward slash (*/”’) as path
separators. Your provider code should handle both of these, and you will probably end up normalizing
the incoming paths to a consistent syntax that makes sense for your provider.

119

Chapter 5: Providers

For the XML provider sample, we use XPath queries, which only understand forward slashes. This
requires us to tweak the user-specified paths to ensure that they are in the right format for the XML
document APIs.

Drive-Qualified Paths

To enable the user to access data located at a physical drive, your Windows PowerShell provider must
support a drive-qualified path. This path starts with the drive name followed by a colon (:). This pattern is
the same as the pattern you're used to seeing for the filesystem.

For example:

O mydrive:\abc\bar: Accesses the item location at \abc\bar in the drive named “mydrive,” which
was created for a provider

QO C:\windows\system32: An easy example of a filesystem path for the C: drive

0O HKLM:\Software\Microsoft: Path to the Registry key \Software\Microsoft in the HKLM
drive, which is created by the Registry provider

Provider-Qualified Paths

A provider-qualified path starts with the name of the provider and a double-colon (“::”’). The part of
the path after the double-colon is referred to as the provider-internal path. The provider-internal path
after the double-colon is passed as-is to the cmdlet for your provider.

For example:

0 FileSystem::\\share\abc\bar: A provider-qualified path for the PowerShell FileSystem
provider. The path that is passed to the provider cmdlet is \\share\abc\bar. This is one form
of using UNC paths.

QO Registry:HKEY_LOCAL_MACHINE\Software\Microsoft: This is a provider-qualified path
that points to the same item as HKLM: \Software\Microsoft.

Provider-Direct Paths

This path starts with \\ or // and is passed directly to the provider for the current location. Therefore,
the path is passed as-is to the current provider.

For example:

Q PS C:\dev\projects > get-item \\server\uploads: Because we're in the FileSystem
provider currently, the path is passed as-is to the callback for the provider cmdlet get-item
(\\server\uploads). The FileSystem provider then treats it as a UNC path. What should be
done with a path of this syntax is provider-specific. In the case of the FileSystem provider, the
first alphanumeric token indicates the server, and everything after that is used to locate a shared
folder on that machine.

0 HKLM:\Software > get-item \\server\uploads: Because we're in the Registry provider, the
supplied path doesn’t refer to a valid item. Thus, no item is returned.

Provider-Internal Paths
This is the part of path indicated after the double-colon (: :)in a provider-qualified path.

120

Chapter 5: Providers

For example, FileSystem: :\\share\abc\bar is a provider-qualified path for the PowerShell
FileSystem provider. The provider-internal path from this is \\share\abc\bar. The provider-internal
path is passed as-is to the provider API and the provider.

Path Expansion

The provider infrastructure expands the path when it contains one of the following:
.\ : Indicates the current location
..\ : Indicates the start of the parent path of the current location

~\ : Starts at the Home directory for the current provider ($HOME is variable set for the FileSystem
provider)

\ : Starts at the root of the current drive

As you can see, there are several different types of paths, and they should all be handled in the callbacks
of your provider. The provider infrastructure will perform path expansion for you. It does its best to
create a full path from the user-specified path before invoking your provider’s callbacks.

Drives

Drives provide a way to logically or physically partition a provider’s data store so that operations are
performed against the correct data store. For the filesystem, this means logical or physical drives that may
be hard disk partitions or possibly logical drives that simply map to another location in the filesystem.
In the case of the Registry provider, drives map to the different Registry hives (HKCU, HKLY, and so on).
For the example XML provider you will create, you map XML documents as drives.

Windows PowerShell applies the following rules for a Windows PowerShell drive:

Q Thename of a drive can be any alphanumeric sequence.

Q Adrive can be specified at any valid point on a path, called a root.

Q Adrive can be implemented for any stored data, not just the filesystem.
Q

Each drive keeps its own current working location, enabling the user to retain context when
shifting between drives.

Error Handling

Instead of using exceptions for handling errors, provider developers must create ErrorRecord objects and
pass them to one of the error-handling methods defined in the cmdletProvider base class. ErrorRecord
objects contain the exception that is causing the error as well as some extra metadata used by the provider
infrastructure for housekeeping. You are highly encouraged to create and pass ErrorRecord instances
to the approved methods, rather than throw an exception that will exit the provider virtual callback
method. Here’s an example of what this code would look like:

ErrorRecord error = new ErrorRecord(new ItemNotFoundException(),
"ITtemNotFound", ErrorCategory.ObjectNotFound, null);
ThrowTerminatingError (error) ;

121

Chapter 5: Providers

It’s important to understand the different ways to handle errors in your provider code. Very similar to
error handling in cmdlets, there are two main APIs to use for handling errors:

QO ThrowTerminatingError(ErrorRecord): This has the effect of stopping the current operation.
Even if the user specified multiple items or paths, the operation would not finish.

QO WriteError(ErrorRecord): This method writes the ErrorRecord instance to the error pipeline,
which the user sees and can interact with, but it doesn’t stop the action from continuing.

Capabilities

Capabilities are specific pieces of functionality that providers may or may not choose to support. The full
list of capabilities can be discovered by examining the ProviderCapabilities enumerated type. When
implementing your provider, you indicate what capabilities that provider supports via an attribute on
the class declaration. Users must also implement their provider in a certain way to achieve that support.
Otherwise, it would be misleading to have a provider declare support for a capability but not actually
implement it.

The ShouldProcess feature is one of the most typical examples of a capability that prompts the user
to determine whether to continue with an operation that modifies one or more items in the provider’s
data store. In addition, if the user specifies the —~confirm parameter to the cmdlet, the ShouldpProcess ()
method will prompt the user for confirmation. The following table (taken from MSDN) lists the values of
the ProviderCapabilities enumerated type and what they indicate:

Credentials The Windows PowerShell provider has the ability to use credentials passed to
the provider from the command line. When this is implemented and the user
supplies credentials on the command line, the Credential property is
populated with those credentials. If this capability is not supported and the
user attempts to pass credentials, the Windows PowerShell runtime throws a
ProviderInvocationException exception (which wraps a
PSNotSupportedException exception).

Exclude The Windows PowerShell provider implements the ability to exclude items in
the data store based on a wildcard string. The Windows PowerShell runtime
performs this operation if the provider does not supply this capability;
however, a provider that implements this capability will typically perform
better if it is available. When implemented, this capability should have the
same semantics as the WildcardPattern class.

ExpandWildcards = The Windows PowerShell provider implements the ability to handle
wildcards within a provider internal path. The Windows PowerShell runtime
performs this operation if the provider does not supply this capability;
however, a provider that implements this capability will typically perform
better if it is available. When implemented, this capability should have the
same semantics as the wildcardpattern class.

Filter The Windows PowerShell provider implements the ability to perform
additional filtering based upon some provider-specific string.

122

Chapter 5: Providers

Include The Windows PowerShell provider has the ability to include items in the data
store based on a wildcard string. The Windows PowerShell runtime performs
this operation if the provider does not supply this capability; however, a
provider that implements this capability will typically perform better if it is
available. When implemented, this capability should have the same semantics
as the WwildcardPattern class.

None The Windows PowerShell provider provides no capabilities other than
capabilities based on derived base classes.

ShouldProcess The Windows PowerShell provider calls shouldProcess () before making any
modifications to the data store. This includes calls made within all New,
Remove, Set, Clear, Rename, Copy, Move, and Invoke interfaces. This allows the
user to use the -whatif parameter.

Most of these correspond to parameters on the provider cmdlets. Consider the parameters for

get-item:
Get-Item [-path] <stringl[]> [-include <string[]>] [-exclude <string[]>]
[-f ilter <string>] [-force] [-credential <PSCredential>] [<CommonParameters>]

You can see that the -include, -exclude, -filter, and -credential parameters have the same name
as the capability enumeration. The CmdletProvider base class has a property for each of these that is
set to the value of the parameter, if present. In your provider’s callback for the cmdlet being executed,
you can check the value and use it accordingly.

Hello World Provider

Here’s an example of the simplest provider that can possibly be created. It doesn’t do much, but
technically it is a provider:

[CmdletProvider ("HelloWorldProvider", ProviderCapabilities.None)]
public class HelloWorldProvider : CmdletProvider

{

}

The provider attribute indicates the friendly name of the provider as well as any specific
“capabilities”” the provider implements. In this case, because we’re only implementing the most basic
provider, we declare our provider as supporting no extra capabilities. The friendly name of the provider
is used to refer to the provider and can be used as a parameter to the get-psprovider cmdlet to retrieve
the ProviderInfo object that contains the information for this provider.

At this point, you could include this class in a snap-in assembly and add it to your session. That’s it,

four lines of code. Of course, this provider won't prove very useful, as it doesn’t do anything. Providing
functionality for your provider is achieved through overriding the virtual methods in the base class. Let’s
assume you compiled the preceding code into a snap-in assembly and added it to the current session. You

123

Chapter 5: Providers

can verify it is loaded by the using the following command, which returns information for the provider
by name:

PS C:\Documents and Settings\Owner> Get-PSProvider HelloWorldProvider
Name Capabilities Drives

HelloWorldProvider None {}

Again, not very useful at all. To unload the provider, remove the snap-in containing it with remove-
pssnapin. Remember that remove-pssnapin unloads the snap-in and the provider, but the assembly is
still in use by the process. The only way to get the assembly unloaded from the process is by exiting
powershell .exe

Here’s another not terribly useful provider, but it shows the first two callback methods:

[Provider ("HelloWorldProvider", ProviderCapabilities.None)]
public class HelloWorldProvider : CmdletProvider
{
protected override ProviderInfo Start (ProviderInfo providerInfo)
{
providerInfo.Description = "This is my first provider that doesn't do much!";
return providerInfo;
}
protected override void Stop()
{
// perform any cleanup
}
}

Each of the provider base classes has virtual methods that can be overridden to add custom functionality.
The cmdletProvider has Start () and Stop () virtual methods, which are invoked when the provider
is initialized and when it is being removed, respectively. These are done at snap-in add and removal
time. The ProviderInfo object that is passed and returned by Start () is the same object returned by
get-psprovider. By overriding the start () method, the developer can create a custom ProviderInfo
derived object with more information than just the properties on ProviderInfo. Let’s look at the
properties on the ProviderInfo object:

QO Name: This is the friendly name of the provider. This name is also used in the case of fully
qualified provider paths. Get-psprovider <name> will return the ProviderInfo or
providerInfo derived instance for the providers that match the search criteria. The provider
name can be used to retrieve help information for a provider, e.g., Get-help <name> -category
provider. To get more information about the FileSystem provider, use the command get-help
filesystem-category provider.

0 Capabilities: Indicates the provider’s specific capabilities

0 Drives: The current drives that exist for each provider. Several drives are created at
startup when the provider is initially created, but they can be changed via new-psdrive or
remove-psdrive

0O Description: The description of what this provider does. This is set by the provider code inside a
callback when the provider is first created and initialized.

124

Chapter 5: Providers

0 PsSnapin: The snap-in to which the provider belongs

QO Home: This is an optional value that can be set to the home path for your provider. This might
be used in cases where you want certain operations to always use home as the base path. For
built-in providers, this is only set by the FileSystem provider and only makes sense for con-
tainer and navigation providers that have a sense of hierarchy.

Built-in Providers

Before we start looking at writing our own provider, let’s examine the providers that PowerShell has
already implemented and provides you out of the box. It’s a good idea to interact with these providers
to get a feel for the provider cmdlets. Use your trusty get-psprovider command to retrieve the list of
currently loaded providers. Get-psprovider returns one or more providerInfo objects depending on
the search parameters given to the cmdlet:

PS C:\Documents and Settings\Owner> get-psprovider

Name Capabilities Drives

Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess {C, G, A, D...}
Function ShouldProcess {Function}
Registry ShouldProcess {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

Output from get-psprovider displays the “’built-in” providers of PowerShell. Any user-created
providers loaded via a snap-in would appear in this list as well.

Alias Provider

The Alias provider derives from the ContainerCmdletProvider base class. For a full explanation of
what cmdlets and operations the ContainerCmdletProvider supports, skip to the “Base Provider Types”
section. Aliases can be created, removed, and modified via the *-item cmdlets. They can also be listed or
retrieved via the get-item and get-childitem cmdlets. Even though the *-item cmdlets give you full
access to alias management, there are also specific *-alias cmdlets that basically do the same thing that
the *-item cmdlets do for the alias provider. The alias cmdlets were provided because they are more
intuitive for people new to PowerShell and not familiar with providers.

The following example demonstrates different ways to retrieve all the currently defined aliases:
PSH> get-childitem alias:
PSH> get-alias
PSH> get-alias *

This next example shows two different ways to create a new alias, foo, that calls get-command:

PSH> new-alias foo get-command
PSH> new-item -path alias:foo -value get-command

125

Chapter 5: Providers

Here, the Alias provider has a single drive called “alias,” and all the aliases exist in the root level of
that drive. Don’t let the fact that the name of the provider and the drive are the same.

For more information about the alias provider, you can access its help information by typing the com-
mand PS > help alias—Category provider.

Environment Provider

The Environment provider derives from the ContainercmdletProvider base class. See the “Base Provider
Types” section to find out what cmdlets and operations this provider supports. Like the Alias provider,
the Environment provider has ways to access environment variables other than just the *-item cmdlets.

The following example gets all the Environment variables by getting all the items in the env: drive:

PSH> get-childitem env:
PSH> S$env:myenv=5
PSH> new-item -path env:myenv -value 5

For more information about the Environment provider, you can access its help information by typing the
command PS > help environment-Category provider.

FileSystem Provider

The FileSystem provider derives from NavigationCmdletProvider. This base class, which derives from
the ContainerCmdletProvider class, adds navigational capabilities through the *-location cmdlets,

in addition to being able to access items by their path. The content of the files is exposed by the ICon-
tentCmdletProvider interface. The properties of the files, such as DateTime stamps or creation and
access info, are exposed via the IPropertyCmdletpProvider interface.

The default drives created for this provider are whatever drives you find in your Explorer window. This
means that physical drives, logical drives, network drives, or mapped drives will be available in this
provider. Drives that are created using the new-psdrive cmdlet in PowerShell only live for the duration
and context of the process in which they were created. Therefore, drives are not shared across instances
of PowerShell. The following example demonstrates the command that would create a new pSDrive for
the PowerShell FileSystem provider and set its root to the specified path:

PS C:\Documents and Settings\Owner> new-psdrive -name mydocs -psprovider Filesystem -
root 'C:\Documents and Settings\Owner\My Documents'

For more information about the FileSystem provider, you can access its help information by typing the
command PS > help filesystem—Category provider.

Function Provider

The Function provider derives from the ContainerCmdletProvider base class. Like the Alias and
Environment providers, it has a one-level container of functions that exist in the root directory of the sin-
gle drive created. In this case, that drive is “function:”. Functions can be created by using the new-item
cmdlet, as well as by declaring a function in a script or on the command line. By dot-sourcing a script
that contains any functions, those functions are then available for access in the Function provider as if

126

Chapter 5: Providers

they were created using new-item. Here’s an example of creating a function using new-item and then
invoking that function to determine whether it is defined:

PS C:\Documents and Settings\Owner> new-item function:\dirtxt -val "get-childite

m *.txt"
CommandType Name Definition
Function dirtxt get-childitem *.txt

PS C:\Documents and Settings\Owner> dirtxt

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\Documents and Settings)\

Owner
Mode LastWriteTime Length Name
-a--- 9/4/2007 10:13 PM 10 blah.txt
-a--- 8/28/2003 6:52 AM 921 reglog.txt

For more information about the Function provider, you can access its help information by typing the
command PS > help function—-Category provider.

Registry Provider

The Registry provider derives from the NavigationCmdletProvider base class. Because it derives from
NavigationCmdletProvider, you can change locations within the different drives of the Registry. In
the context of the Registry provider, drives map to Registry hives. By default, only two drives are
created: HKCU and HKLM. One could just as easily map a new drive to one of the other hives. The following
command would create a drive for the HKEY_USERS hive:

PSH> new-psdrive -name HKU -psprovider registry -root HKEY_ USERS

One interesting thing to note about the Registry provider is the decision to implement the values
for the Registry settings under the keys as properties, rather than using the name as part of the
item’s path.

The following set of commands show how to access the settings of Registry keys that are exposed as item
properties in the Registry provider:

PS C:\Documents and Settings\Owner> dir

HKLM: \Software\Microsoft\PowerShell\l\PowerShellEngine
PS C:\Documents and Settings\Owner> get-itemproperty
HKLM: \Software\Microsoft\PowerShell\l\PowerShellEngine

PSPath : Microsoft.PowerShell.Core\Registry: :HKEY LOCAL_MACHINE\
Software\Microsoft\PowerShell\1l\PowerShellEngine

PSParentPath : Microsoft.PowerShell.Core\Registry: :HKEY LOCAL_MACHINE\
Software\Microsoft\PowerShell\1l

PSChildName : PowerShellEngine

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

127

Chapter 5: Providers

ApplicationBase : C:\WINNT\system32\WindowsPowerShell\vl.O0
ConsoleHostAssemblyName : Microsoft.PowerShell.ConsoleHost,Version=1.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35, ProcessorArchitecture=msil

ConsoleHostModuleName : "C:\WINNT\system32\WindowsPowerShell\vl.O0\
Microsoft.PowerShell.ConsoleHost.dll"

PowerShellVersion : 1.0

RuntimeVersion : v2.0.50727

Whether you expose the leaf nodes of your data store as items accessible via paths, as properties
(*-itemproperties), or as content (*-content) is up to you and should ultimately be determined by
what best fits your data store. This is just one of several design decisions that need to be kept in mind
when determining how you want users to access your provider. The concepts of provider properties and
content are explained more thoroughly in the section “Optional Provider Interfaces.”

For more information about the Registry provider, you can access its help information by typing the
command PS > help registry—Category provider.

Variable Provider

The variable provider derives from the ContainerCmdletProvider base class. It has a single-level
container of all the variables at the root of the single drive created for this provider, “variable:.” The
following example demonstrates retrieving a variable using get-item:

PS C:\Documents and Settings\Owner> S$myvar="3"
PS C:\Documents and Settings\Owner> get-item variable:\myvar

Name Value

myvar 3

For more information about the variable provider, you can access its help information by typing the
command PS > help variable-Category provider.

Certificate Provider

The certificate provider derives from the NavigationCmdletProvider base class. It allows you to
access the various certificates on the machine. Things such as code-signing certificates can be viewed
here and also retrieved for signing PowerShell scripts if security is a concern.

For more information about the certificate provider, access its help information by typing the com-
mand PS > help certificate-Category provider.

Base Provider Types

This section discusses the provider base classes from which your provider class will derive. These base
classes are layered so that each successive class derives from the previous one, adding additional features.
Simply choose what point of functionality you want to hook in at and derive from that class. There are
also optional interfaces that can be implemented in isolation, such as IPropertyCmdletProvider. These

128

Chapter 5: Providers

interfaces are orthogonal to the base provider type that all providers ultimately derive from. In addition,
a single provider may implement multiple “provider” interfaces.

We will cover each provider class and interface, and the cmdlets that are supported by them.

CmdletProvider

All provider classes ultimately derive from this base class. Most providers don’t derive from this class
directly, however, as it only has the start () and Stop () callbacks. These enable developer code to be
executed when the provider is initialized and terminated, respectively. These events occur at snap-in
adding and removal time. More important, this class has several methods and properties for interacting
with the provider infrastructure, host, and session state that will be used by providers implementing the
other base classes. The actual methods and properties are examined later in this chapter.

DriveCmdIetProvider

The DrivecmdletpProvider class defines a provider that enables the creation and removal of drives. This
class has methods the user can override to provide specific functionality when the drive cmdlets are
executed and for initialization of any default drives.

The DriveCmdletProvider class derives from CmdletpProvider and supports the following
cmdlets:

QO new-psdrive: This cmdlet creates a drive for a given provider. The following arguments are
mandatory when creating a new PsDrive: Name, PsProvider, and Root. The values for these
parameters are used to create a PsDriveInfo object, which is passed to a virtual method
(NewDrive ()), which the provider implementer overrides to provide custom functionality for
this cmdlet. It is possible to return an instance of a custom drive object, but that object must
derive from PSDrivelInfo. In fact, this is a popular way for users to persist data such as
connections or path information for the drives of a provider. A provider may also add dynamic
parameters, which may or may not be mandatory. See the section “DriveCmdletProvider” for
more information about dynamic parameters. The object written to the pipeline from this cmdlet
is a PsDriveInfo object.

0 remove-psdrive: This cmdlet removes the specified drive. This in turn causes the provider
infrastructure to invoke a virtual callback method on the DriveCmdletProvider class, giving
the implementer a chance to perform any cleanup for the removal of the drive. In the case of
our XMLProvider examples, you use this to save any changes to the XML document back to the
original file that was used to create the drive.

ItemCmdletProvider

By deriving from this base class, your provider supports operations for the DriveCmdletProvider as well
as accessing items located by their paths. These paths point to items inside your data store. The path(s)
supplied to the cmdlets supported by a provider of this type point to one or more items, and don’t
support navigation. Nor do they differentiate between a container and leaf node. The operations users
can perform on these items include retrieving them, clearing them, or invoking them, which performs
some provider-specific action.

129

Chapter 5: Providers

Providers deriving from this class only support provider-qualified paths. That means the user must
always specify the provider in the path. The provider infrastructure strips out the provider name and
passes the provider internal path to the callbacks for each cmdlet.

How do you access an item for a given drive? Good question. Because a drive-qualified path doesn’t
work, the path must have a format like the following Provider: :drive:\pathl\path2. Then the string
drive:\pathl\path2 will be passed to the callback method for your cmdlet. If your provider had no
drives and was a single data store, then whatever was present after Provider: : would be passed to your
cmdlet callbacks.

Items that are written to the pipeline have properties added regardless of the type of object that provider
outputs. The following properties are added as NoteProperties to the PSObject that wraps the object
your provider emits via a call to WriteItemObject ():

Q PSPath: The fully qualified provider path. It has the following syntax: snapin\provider: :
drive:\path.

Q PSProvider: The provider to which this item belongs

0 PSIsContainer: This indicates whether this item is a container or not; this is taken from the
isContainer Boolean passed in the call to writeItemObject () from inside your provider code.

Some of the *-item cmdlets don’t write objects to the pipeline, but they can if the —PassThru parameter
is supplied. set-item is one such cmdlet, and several of the other *-item cmdlets in the other provider

base types support this as well. Using get-command or get-help for a specific *-item cmdlet will indicate
whether or not it supports the —PassThru parameter.

The ItemCmdletProvider class derives from DriveCmdletProvider and supports the following cmdlets:

0 get-item: Retrieves the item at the specified location. The path supplied is specific to that
provider, and the implementer is responsible for parsing the path to ultimately determine what
item, if present, should be returned. This does not return “content” for that item if the provider
also implements the IContentCmdletProvider interface. The Get-content cmdlet must be used
in that case. The object at the specified path is written to the pipeline via a call to WriteItemOb-
ject (), which is defined in the cmdletProvider base class. Get-item may return one or more
objects from a single path. For the sample XML provider, it’s possible to have multiple XML
nodes of the same name, in which case get-item may return multiple nodes. It is also possible
for the user to specify multiple paths and/or a single path to be expanded into multiple paths if
your provider supports wildcard expansion.

0 clear-item: Deletes the contents or value of the item at the specified location but does not delete
the item. An example of this for the Variable provider would be to clear the value of the variable
if it existed but not remove it.

0 set-item: Sets an item at the specified location with the indicated value. It is up to the provider
to determine the semantics of setting an item that already exists versus one that doesn’t. In most
cases it probably won’t matter, but your provider may need to make a distinction in
some cases.

0 invoke-item: Invokes the default action for an item at the specified location. For the Filesystem
provider, this would mean invoking the application associated with the file’s extension.

130

Chapter 5: Providers

ContainerCmdletProvider

By deriving from this base class, your provider will support operations for the TtemCmdletProvider as
well as the cmdlets for dealing with a multilayered data store. A container provider is similar to an N-tree
and is the first provider that introduces a sense of hierarchy. There is no support for nested containers,
though. Nested containers are only supported in navigation providers. The container provider does allow
the user to interact hierarchically with the items in the data store.

The ContainerCmdletProvider class derives from ItemCmdletProvider and supports the following
cmdlets:

QO Copy-item: Copies items for a provider from one location to another. The item(s) that are copied
are specific to the provider. The -recurse parameter indicates that all items underneath the
specified item should be copied as well.

Q Get-childitem: Gets the items and child items in one or more specified locations. The items
returned may be containers or not. If the specified path points to a leaf node, this cmdlet per-
forms similarly to get-item. However, if the path points to a container, all the items inside the
first level of that container would be displayed. In the case of the filesystem, all the files and
directories in a specified directory would be returned but not the files in the subdirectories. All
files and directories could be returned if the -recurse parameter is specified.

0O New-item: Creates one or more items for the provider at the specified location(s). An optional
-value parameter is used to pass the data used to create the item(s) for your provider. For
navigation providers, the -type parameter may be needed to indicate whether the new item is a
container or a leaf node, but for a container provider only child items can be created.

0O Remove-item: Deletes the item(s) at the specified location(s) for the provider. Unlike
clear-item, this cmdlet does actually remove the item so that it no longer exists; thus, get-item
would not return the recently removed item.

0 Rename-item: Renames a single item at the specified location. This cmdlet doesn’t need to dif-
ferentiate between containers and non-containers because it is only renaming a single item. The
renamed item is still in the same container, it just has a different name.

0 Set-location: Sets the location context for the provider to the specified path if it exists and is
a container for the provider. If a relative path is supplied, then the new location is the current
location for the current drive plus the user-supplied relative path. This, of course, assumes the
user is currently inside the provider for which the location is being changed. Otherwise, a
drive-qualified or provider-qualified path must be supplied. This will change the context to the
new provider, and for navigation providers sets the CurrentLocation property for the drive to
which the user is moving.

O Pop-location: Changes the current location to the location most recently pushed onto the stack.
You can pop the location from the default stack or from a stack that you create by using
push-Location. Pop-location works across providers, so if the last path you put on the default
stack was from the Registry provider (Registry key) and you were currently in the FileSys-
tem provider, pop-location would switch your current provider context to the Registry and set
your path accordingly.

Q Push-location: The push-location cmdlet pushes the current location onto a default stack
or onto a stack that you create. If you specify a path, push-location pushes the current location

131

Chapter 5: Providers

onto the stack and then changes to the location specified by the path. You cannot push a
location onto the stack unless it is the current location.

0 Get-location: Returns the current location and writes it to the pipeline so it can be displayed,
stored in a variable, or piped into another command.

0 resolve-path: Interprets the wildcard characters in a path and displays the items and containers
at the location specified by the path. This may result in one or more paths being returned.

0 test-path: Indicates whether the specified location actually exists for this provider. Returns a
Boolean with the value of true if it exists; otherwise, it returns false.

NavigationCmdletProvider

This base class supports all operations from the ContainerCmdletProvider as well as relative paths
and nested containers. Using the filesystem as an example, nested containers would be directories and
subdirectories that the container provider does not support. Relative paths allow you to use the current
location as the starting point when passing paths to the provider cmdlets. Instead of having to type the
full path of an item each time, you can simply type the relative path inside the current container you
are in. Again, this is analogous to directories on the filesystem, but providers enable you to extend this
concept to any data store, which in fact is what the Registry and Certificate providers do.

The NavigationCmdletProvider class derives from ContainerCmdletProvider. It supports the
following cmdlets:

0 join-path: Combines two paths into a single path, using a provider-specific delimiter between
paths. The resulting path is written to the pipeline as a string. This cmdlet is useful when cre-
ating paths based on variables and strings, and eliminates the need for users to know the path
delimiter for the provider. This example joins the specified paths, and passes that path to
set-location, which changes the current location to the new value:

PS C:\> join-path winnt system32 | set-location
PS C:\winnt\system32>

0O move-item: Moves one or more items from one location or container in the provider to another.
The items being moved may be containers or child nodes. Specifying the -recurse parameter
copies all sub-items and subcontainers as well.

Optional Provider Interfaces

In addition to deriving from one of the Windows PowerShell base classes, your Windows PowerShell
provider can support other functionality by deriving from one or more of the following provider
interfaces. This section defines those interfaces and the cmdlets supported by each. It does not describe
the parameters for the interface-supported cmdlets. Cmdlet parameter information is available online
using the Get-Command and Get-Help cmdlets.

IContentCmdletProvider

The IContentCmdletProvider interface defines a content provider that performs operations on the
content of a data item. The definition of content varies for each provider and may not even exist for

132

Chapter 5: Providers

some providers. Support for content means the items in your data store need to support more complex
operations than set, clear, and get. This interface returns reader and writer objects such as the stream
classes in .NET. This makes it ideal for modifying stream-based data or sequential data structures such
as lists, collections, or anything row-based. Key-based data structures such as hashtables are better suited
for the IPropertyCmdletProvider. You may need to implement both if the items in your data store
have properties and content that are separate from each other.

This interface is optional, but in order for it to make sense, your provider class must minimally derive
from the ItemCmdletProvider base class. Otherwise, your provider won't have support for items and
paths for which you are trying to modify the content.

By implementing this interface, your provider is declaring support for several cmdlets that return objects
derived from other specific interfaces, such as IContentRead and IContentiiriter. There is some extra
overhead in using the content interfaces to modify the items in your data store. There are three interfaces
to implement, and how you want users to modify the items in your data store is an important design
consideration. It may be that the objects returned by the *-item cmdlets already have public APIs for
doing all the modifications needed, but if the data is laid out sequentially, then support for the content
cmdlets may make sense.

IContentCmdletProvider supports the following cmdlets:

Q get-content: The get-content cmdlet gets the content of the item at the location specified by
the path. It reads the content one “line”” at a time and returns an object for each line. This cmdlet
ends up calling GetContentReader () from the IContentCmdletProvider interface. The provider
implementer is responsible for returning an IContentReader derived instance, which is used to
retrieve the content of the item one object or line at a time. In the case of a file, this would return
each line as a separate object.

O set-content: The set-content cmdlet sets the content of the item at the specified location. An
array of objects is used as the value. The provider developer is responsible for creating an
IContentliriter derived object, which iterates through the object array value and sets the con-
tent of the item with these objects. How the objects are converted and ““streamed” to the item in
the data store is very provider specific. In the case of a text file, this would be line by line, but
your items may have a very specific binary structure that warrants data marshalling, or maybe
you store objects directly.

0 add-content: This cmdlet appends the specified content to the existing content of the item at
the specified path. This uses the IContenturiter interface in the same manner as
set-content. It performs a seek operation to the end of the item’s content and then writes the
supplied values.

Q clear-content: This cmdlet clears the content of the item at the specified location but does not
delete the item.

IPropertyCmdiletProvider

The IPropertyCmdletProvider interface defines a property provider that enables access to the
properties of one or more items in your provider. Think of this as a static hashtable. You can get, set,
or clear the values of the properties but you can’t modify the property names. The properties that you
want to allow access for are the same for all the items in your data store and they will

never change.

133

Chapter 5: Providers

IPropertyCmdletProvider supports the following cmdlets:

Q clear-itemproperty: Sets properties of the specified items to the ““clear”” value. This means the
property still exists but it has no value. This is similar to clear-item or clear-content but
for properties.

0 get-itemproperty: Retrieves properties from one or more items at the specified locations. The
property values are written to the pipeline.

0 set-itemproperty: Sets the value of the property to the supplied value for the items at the spec-
ified locations. This cmdlet can take a single name and value to set the property of the items or
it can take a PSObject, in which case it extracts all the properties from the object and uses those
name-value pairs to set the properties of the item.

IDynamicPropertyCmdletProvider

The IDynamicPropertyCmdletProvider interface, derived from IPropertyCmdletProvider, defines

a provider that supports dynamic or runtime properties for its items. This type of provider handles
operations for which properties can be defined at runtime — for example, a new-1itemproperty operation.
Such operations are not possible on items that have statically defined properties.

The IDynamicPropertyCmdletProvider interface derives from the IPropertyCmdletProvider
class. It supports the following cmdlets:

0 copy-itemproperty: Copies a property from the specified item to another item

0O move-itemproperty: Moves a property from the specified item to another item

0O new-itemproperty: Creates a new property on the specified items and streams the resultant
objects

0 remove-itemproperty: Removes a property for the specified items

0 rename-itemproperty: Renames a property of the specified items

ISecurityDescriptorCmdietProvider

The ISecurityDescriptorCmdletProvider interface adds security descriptor functionality to a
provider. This interface allows the user to get and set security descriptor information for an item in
the data store. This interface supports the following cmdlets:

O get-acl: Returns the security descriptor for the items at the specified locations. The security
descriptor contains the ACL (Access Control List) for the resource that the items refer to, which is
used to check permissions such as read /write.

O set-acl: Sets the security descriptor for the items at the specified locations, which will update the
permissions for the resources to which the items refer.

CmdletProvider

The most basic provider derives from the CmdletProvider base class. The CmdletProvider class provides
several methods and properties used by providers to implement their custom functionality. In addition
to these, there are some virtual callback methods for when the provider is instantiated and removed
from the session. The DriveCmdletProvider base class enables you to add and remove drives but it still

134

Chapter 5: Providers

doesn’t create a useful provider by itself. Although it is possible to create providers from either of these
classes, in most cases developers should derive from one of the following classes to implement their own
PowerShell providers:

0O ItemCmdletProvider: Serves as a base class for providers that expose an item as a PowerShell
path. It only supports provider-qualified paths.

0O ContainerCmdletProvider: Serves as a base class for PowerShell providers that perform
operations such as rename, remove, and copy; and checks existence against items that are
appropriate for containers.

0 NavigationCmdletProvider: Serves as the base class for PowerShell providers that perform
operations against items in a multilevel data store.

Here’s another look at the basic HelloWorld provider:

[Provider ("HelloWorldProvider", ProviderCapabilities.None)]
public class HelloWorldProvider : CmdletProvider
{
protected override ProviderInfo Start (ProviderInfo providerInfo)
{
providerInfo.Description = "This is my first provider that doesn't do much!";
return providerInfo;

}

protected override void Stop()

{

// perform any cleanup
}
}

Let’s discuss the two virtual callback methods in more detail:

protected override CmdletProvider.Start (ProviderInfo providerInfo) { ... }

This method is invoked when the provider is instantiated and added to the current PowerShell
session. There are two ways for the provider to be added. When the snap-in containing the provider is
added, the start () method is called. The other way to add your provider to PowerShell is by
creating a custom shell, specifying your provider and the assembly containing the provider. This causes
the provider to be instantiated and added at startup of the custom shell. In the preceding code example,
we don’t do much other than set a custom description. This description can then be retrieved via
get-psprovider HelloWorldProvider after the snap-in is loaded. Although it’s not done here,

it is common to create a custom ProviderInfo derived object to store or persist data for the provider. This
allows the provider-specific data to be passed along via the ProviderInfo instance, which is available as
a property on the cmdletProvider class, and also available via get-psprovider from the command line.
In this respect, the custom ProviderInfo class enables the user to pass provider-specific data between
the command line and the internal implementation of the provider.

Now consider the following method:
protected void CmdletProvider.Stop() { ... }
This method is invoked when the provider is being removed from the current PowerShell session. The

provider is removed when the snap-in containing the provider is removed. This allows the provider to
perform cleanup of any resources created during the lifetime of the provider.

135

Chapter 5: Providers

There is a virtual method called StartDynamicParameters (), which is supposed to allow runtime
defined parameters during creation of the provider. At the time of writing, however, this callback doesn’t
actually get called back, so don’t worry about it.

Methods and Properties on CmdletProvider

The cmdletpProvider base class also has several methods and properties that the developer will undoubt-
edly use to perform actions such as writing objects to the pipeline, error handling, and executing
commands internally. The reader should refer to the Windows PowerShell SDK on MSDN to see the
full list. This section describes some of the important methods of cmdletProvider that most providers
will end up using, as shown here:

public void WriteItemObject (object item, string path, bool isContainer) ;

Developers can call this method when they want to write an item to the pipeline. This will happen
when the user executes get-item for an item that actually exists. The path parameter is the value that
is added to the object for the Pspath property, which is discussed in the ItemCmdletProvider previ-
ously. The isContainer Boolean indicates whether the item is a container. This value should always be
false, except for the container and navigation providers that support containers. A single get-item
or get-childitem call may result in multiple calls to this method. If so, it’s up to the developer to
determine the order in which the items are written to the pipeline, as that will affect the order in which
the user sees them.

public void WriteError (ErrorRecord errorRecord) ;
public void ThrowTerminatingError (ErrorRecord errorRecord) ;

These methods are invoked by a provider when an error is encountered that the user should be noti-
fied about. They are discussed further in the “Error Handling”” section later in this chapter. The most
important thing to understand here is that ThrowTerminatingError () stops the current operation from
continuing, whereas WriteError () does not. ThrowTerminatingError () ends up throwing an exception,
so you don’t have to worry about returning from your callback after calling it.

The following methods display some information text to the user:

public void WriteVerbose(string text);
public void WriteWarning(string text);

The text supplied to WriteVerbose () is only displayed if the user specifies the -verbose parameter
of the provider cmdlet. WriteWarning () always displays its text in yellow. Sprinkling your provider
code with WritevVerbose () statements makes it possible for the user to gain some extra insight more
easily if an error has occurred. For example, sometimes the path specified as a parameter to the cmdlet
will not be the same as the path in the callback method for that cmdlet.

The ShouldProcess () methods are used by providers that support the Shouldprocess capability:

public bool ShouldProcess(string target);
public bool ShouldProcess(string target, string action);
public bool ShouldProcess (string verboseDescription, string verboseWarning,
string caption);
public bool ShouldProcess (string verboseDescription, string verboseWarning,
string caption, out ShouldProcessReason shouldProcessReason) ;

136

Chapter 5: Providers

By declaring support for the Shouldprocess capability, the developer must call ShouldProcess () before
executing any operations that would modify the data store or an item in that data store. Typical opera-
tions where this should be used are set-item, clear-item, and so on. If the user specifies the —~confirm
or -whatif cmdlet parameter, invocation of ShouldProcess () prompts the user to indicate what the
operation is. Then, for —-confirm, it waits for the user to respond to indicate whether it should continue
with the operation. If the user does not specify ~confirm or —whatif, then calls to ShouldProcess () do
nothing. This feature is quite handy when creating complex pipelines of multiple commands and there is
some doubt as to exactly what items will be modified or deleted in your provider. Because a single path
may return multiple items, ShouldpProcess () should be called for each item being modified. Users can
choose yesToall to stop the prompting if they desire.

Like ShouldProcess (), the following method prompts the user and waits for their input before
continuing with the operation:

public bool ShouldContinue(string query, string caption);
public bool ShouldContinue(string query, string caption, ref bool yesToAll, ref
bool noToAll);

However, ShouldContinue () always prompts the user, whereas ShouldpProcess () only prompts when
-whatif or -confirm are specified at the command line. ShouldContinue () should be used in cases
where there is some ambiguity about the operation or the item in question, thus requiring the user to
verify the course of action.

Following is the ProviderInfo instance that is created for your provider:
protected internal ProviderInfo ProviderInfo { get; }

This is written to the pipeline via get-psprovider. It has some useful information, such as the current
drives for this provider and its capabilities.

This next property contains a reference to the drive in which the current operation is being performed:

protected PSDriveInfo PSDriveInfo { get; }

This will come in handy when you need to determine which drive of your data store to look in for the
item you're retrieving or modifying. This base class property is only set for the Container-
CmdletProvider and NavigationCmdletProvider classes. If your provider is deriving from
ItemCmdletProvider, you will have to parse the path yourself to determine the drive. You can use
the base.ProviderInfo.Drives to retrieve the PSDrive based on name.

In the following example, SessionState refers to the context of the current PowerShell session:

public SessionState SessionState { get; }

Think of this as all the currently defined variables, aliases, functions, providers, and drives that exist
in the powershell.exe process. Notice how all of these concepts have providers associated with them.
That’s because they are nothing more than data stores. Each runspace has its own session state, and
powershell.exe currently only allows a single runspace. The SessionState object provides a

way to access these data stores that would normally require cmdlets. Rather than having to execute
get-variable in a separate pipeline, SessionState has a PSvariable property that returns a
PSVariableIntrinsics, which allows the developer to add, remove, and get variables defined in the

137

Chapter 5: Providers

current PowerShell session. This enables your provider to easily create or set a number of variables when
it is initialized, which it may use when accessing the data store. Note the use of the word “intrinsics”
in the property or classname as this usually indicates an object you can use to execute commands via
internal APIs, rather than at the command line or by creating and executing a pipeline.

The commandInvocationIntrinsics object enables you to execute scripts or any arbitrary command line
from within your provider in the current runspace:

public CommandInvocationIntrinsics InvokeCommand { get; }
ProvideIntrinsics enables you to execute provider cmdlets through an API for your provider:
public ProviderIntrinsics InvokeProvider { get; }
It has a property for each type of provider functionality (item, content, property, security). Therefore,
rather than having to execute a get-item or get-content cmdlet from within your provider, you can use

this class to perform those operations via internal APIs.

The following base class property enables the developer to access any dynamic parameters that may have
been supplied for the current operation:

protected object DynamicParameters { get; }
This is only set when the user supplies a dynamic parameter that the provider cmdlet supports.

The following example indicates one or more items to exclude when performing an operation. For
example, the user could exclude text files with ““*. txt”” when calling get-item for the filesystem:

public Collection<string> Exclude { get; }
A filter is a provider-specific path that can be used when retrieving items from the data store:

public string Filter { get; }
Rather than -Exclude or -Include, which are used after retrieval to thin out the list of items to return,
the -Filter value is used at the time of accessing the data store so that the operation may return the
exact set of items desired.
The following flag indicates that the operation should continue regardless of any warning scenarios:

public SwitchParameter Force { get; }

What may be considered a warning is provider specific, but typically this involves copying over or
creating an item that already exists. Otherwise, your provider may want to prompt the user.

Use the following to indicate one or more items to include when performing an operation:

public Collection<string> Include { get; }

For example, the user could specify only text files with “*.txt”” when calling get-item for the
filesystem.

138

Chapter 5: Providers

DriveCmdIetProvider

The previous provider wasn’t very useful. Providers present a consistent interface to a data store. Drives
represent the partitioning of that data store or possibly the data stores themselves. In the case of our
sample XML provider, a drive is mapped to an XML document. If you were writing an SQL or database
provider, a drive would most likely be a connection to the database. The NewDrive () method takes a
PSDriveInfo object and returns an instance of PSDriveInfo. The simplest thing to do here would be

to return the instance passed to the method. In fact, this is what the default implementation does if the
method is not overridden by the developer.

Sometimes, however, you may want to attach some extra information to your drive. This is
accomplished by creating your own PSDriveInfo derived class and creating an instance of that class with
the PsDriveInfo instance. In the case of our sample XML provider, we use the -path dynamic parameter
to set the DocumentPath property of our xmlDriveInfo object. This is used to create our XmlDocument,
which we would use for accessing the elements in the XML document.

The NewDriveDynamicParameters () callback enables you to add runtime parameters to the
new-psdrive cmdlet that are specific to your provider. Let’s say you wanted to add a -path parameter to
the new-psdrive cmdlet for our sample XML provider. You would create a collection of RuntimeDe-
finedParameter objects and add a single parameter object with the name -path, and specify the type of
the parameter. This indicates to the provider infrastructure that new-psdrive for that provider has extra
dynamic parameters.

All of the properties of a parameter that can be defined using the normal mechanism of attributes

for cmdlets can be specified at runtime as well. Note that it is possible to make a dynamic parame-
ter mandatory. Because we made the -path parameter mandatory, the user must supply a value for

it when invoking new-psdrive for our XML provider. The object instantiated by the provider imple-
menter and returned by the NewDriveDynamicParameters () callback indicates that there is a dynamic
parameter “-path” and that it is mandatory. The provider infrastructure uses the information from
this object to populate the DynamicParameters property of the CmdletProvider class. This Dynamic-
Parameters property is available to your cmdlet callbacks and is how you extract values for them.
DynamicParameters is always set to the dynamic parameters for the current cmdlet being executed.

For providers that implement the DriveCmdletProvider base class or higher, the InitializeDefault-
Drives () virtual method is invoked to allow the provider to create any initial drives. Drives created

in this method are generally the drives you want to be available to the user without them having to use
new-psdrive. In the example of the FileSystem provider, this would be any drives already present in the
operating system’s filesystem. Create the PSDriveInfo derived objects and return a collection of them.
In the following example, we have overridden the method but return null. This is basically the same as
not overriding the function at all. Because our sample XML provider maps drives to XML files, we don’t
start out with any default drives.

If you are going to create drives in InitializeDefaultDrives (), use names that won't clash with already
existing drives. Drive names are globally unique, and if you try to initialize a drive that already exists,
the user will get an error when your provider is starting up (i.e., when the snap-in is being loaded). The
provider will still load, but the user will have to manually create the drive or your provider might be left
in an indeterminate state.

The RemoveDrive () callback method enables us to perform any cleanup for the specific drive being
removed. This is called when the drive is being removed via remove-psdrive or the provider is shutting

139

Chapter 5: Providers

down from its snap-in being removed or the user exiting the shell. In the case of our XML provider, we
use an XmlDocument instance to represent the XML file for our drive. If any changes were made to the
document we would want to save them. This is done in RemoveDrive (). No dynamic parameters are
available for remove-drive.

At this point, we're actually using input from the user to control what we map our drive to. The user
must supply a path parameter to the XML document we use. What if the file doesn’t exist or some other
error occurs when trying to access it? This is the point at which we must discuss how error handling is
managed in our provider. We will show a quick example of the most typical way to handle errors.

Errors should be handled by creating an instance of the ErrorRecord class and then calling either
WriteError () or ThrowTerminatingError (). Which method you should use to pass your ErrorRecord
instance to the user depends upon the priority and severity of the error. The main consideration is
whether the error should stop the current operation from continuing. If the answer is yes, then call
ThrowTerminatingError (), which stops the current operation and throws an exception, which the user
can interact with to determine the next course of action. If the error shouldn’t stop the current operation,
use WriteError (). Also available is WriteWarning (), which should be used to indicate much less severe
errors that the user may not need to actually worry about. The following is an xmlDriveProvider.cs
sample XML provider:

public abstract class ItemCmdletProvider : DriveCmdletProvider

{
protected ItemCmdletProvider () ;

// clear-item cmdlet
protected virtual void ClearItem(string path) ;
protected virtual object ClearItemDynamicParameters (string path) ;

// get-item cmdlet
protected virtual void GetItem(string path);
protected virtual object GetItemDynamicParameters(string path) ;

// invoke-item
protected virtual void InvokeDefaultAction(string path);
protected virtual object InvokeDefaultActionDynamicParameters (string path);

// Used to validate path before attempting other operations
// or callbacks
protected abstract bool IsValidPath(string path);

// used by multiple cmdlets to verify item exists at a location
protected virtual bool ItemExists(string path);
protected virtual object ItemExistsDynamicParameters (string path) ;

// set-item cmdlet

protected virtual void SetItem(string path, object value);
protected virtual object SetItemDynamicParameters (string path, object value);

Here’s the class declaration for the xmlDriveInfo class that derives from PsDriveInfo. The constructor
for our custom drive class must call the base constructor, which takes a PSDriveInfo reference. By using

140

Chapter 5: Providers

the xm1DriveInfo class, you can set any properties or values in addition to the methods and properties
of PSDriveInfo.

public class XmlDriveInfo : PSDriveInfo
{
private string _path;
private XmlDocument _xml;
public string DocumentPath
{
get { return _path; }
}
public XmlDocument XmlDocument
{
get { return _xml; }
internal set { _xml = value; }
}
public XmlDrivelInfo(string path, PSDriveInfo drive)
: base (drive)
{
_path = path;
_xml = new XmlDocument () ;
_xml .Load (_path) ;

ItemCmdIletProvider

The ItemCmdletProvider base class is where you can begin to see how useful providers are. By using
paths, you can allow items to be retrieved, cleared, and tested for existence. This is also where you need
to come up with a path syntax for the provider that you can use to identify items within the data store.
Naturally hierarchical data structures will have paths similar to the FileSystem or Registry provider.
However, in those cases, you'll probably want to derive from the Container or Navigation classes to
provide even more useful access to your data store. Even if that’s the case, this section describes how you
would implement just the methods in the TtemCmdletProvider for now.

ItemCmdletProvider derives from DriveCmdletProvider, so the methods for that class should be
overridden as well. Most of the method names are self-explanatory enough to indicate when they would
be invoked and what their purpose is.

Here’s the public API surface of the class to show what methods you can override:

public abstract class ItemCmdletProvider : DriveCmdletProvider
{
protected ItemCmdletProvider () ;
// clear-item cmdlet
protected virtual void ClearItem(string path);
protected virtual object ClearItemDynamicParameters (string path) ;
// get-item cmdlet
protected virtual void GetItem(string path) ;

141

Chapter 5: Providers

protected virtual object GetItemDynamicParameters(string path) ;

// invoke-item

protected virtual void InvokeDefaultAction(string path) ;

protected virtual object InvokeDefaultActionDynamicParameters (string path);
// Used to validate path before attempting other operations

// or callbacks

protected abstract bool IsValidPath(string path);

// used by multiple cmdlets to verify item exists at a location

protected virtual bool ItemExists(string path) ;

protected virtual object ItemExistsDynamicParameters (string path) ;

// set-item cmdlet
protected virtual void SetItem(string path, object value);
protected virtual object SetItemDynamicParameters (string path, object value);

}

The callback methods here each correspond to a specific cmdlet. Not overriding the method that
corresponds to the cmdlet with the same name (get-item ->GetItem())means an error will be reported
to the user indicating that your provider doesn’t support that operation if they try to use that cmdlet.
Of course, that may be desired behavior if your provider can’t support that operation. Note that this is
different from DriveCmdletProvider, where there is a reasonable default action for new-psdrive and
remove-psdrive if the NewDrive () and RemoveDrive () methods are not overridden.

For example, suppose your ItemCmdletProvider didn’t support clear-item, only get-item and
set-item. By not overriding the ClearItem() method, the following error would occur when the user
tried to call clear-item for your provider (sssume you've created a provider “XmlItemProvider” and it
has a drive called “foo”):

PS C:\Documents and Settings\Owner> clear-item Xmlitemprovider::foo:\rootpath
Clear-Item : Provider execution stopped because the provider does not

support this operation.

At line:1 char:11

+ clear-item <<<< Xmlitemprovider::blah:\0Objs\Obj

In addition, there is a method that returns optional dynamic parameters for almost every cmdlet.
Using get-item as an example, there is a GetItemDynamicParameters ()callback method. The
associated dynamic parameter methods can either be declared and return null or just not be overrid-
den at all to indicate that there are no dynamic parameters for that particular cmdlet. Whether or not
your cmdlets need dynamic parameters is provider specific. In the case of our sample XML provider,
every cmdlet returns a -namespace dynamic parameter. This is due to an internal implementation detail
specifying that using XPath query strings and the XmlDocument .SelectNodes () method require the
namespaces to specify whether the document has any namespace other than the default (which is

no namespace defined).

As a result, the sample XML providers automatically check all namespaces when looking up items by
their path, but if a namespace is specified by the user via the -namespace dynamic parameter, then
only that namespace is used when searching for the item located by the path. Again, this is one of those
internal implementation details that vary according to the details of your provider/data store. This is
also exactly the reason why dynamic parameters exist for all the provider cmdlets. Otherwise, it would
make it difficult to create useful providers for some data stores.

142

Chapter 5: Providers

Let’s start by looking at the declaration of our provider that supports ““items’”:

[CmdletProvider ("XmlItemProvider", ProviderCapabilities.ShouldProcess)]
public class XmlItemProvider : ItemCmdletProvider
{

}

This is very similar to the class declaration for the drive provider. We derive from ItemCndletProvider,
which has the extra methods to override. However, if you look closely, we supply a different value for
ProviderCapabilties to the CmdletProviderAttribute. For our xmlItemProvider, we declare support
for shouldProcess. This means that we will call Shouldprocess () before modifying any of the items in
our XML document.

Now look at the methods we want to override:

protected abstract bool IsValidPath(string path);

First, we must look at IsvValidpath() as it’s the only abstract method. This method is used to determine
whether a path is syntactically correct. The path doesn’t have to actually exist; it should just verify that
the syntax of the path is correct. The provider infrastructure calls this method before any other callbacks.
This enables callbacks invoked after this one to go on the assumption that the syntax of the path is
valid. This method doesn’t correspond to a specific cmdlet and is in fact invoked for the majority of the
provider cmdlers. It is used as an early detector to stop or continue the operation. If the path is invalid,
then it can’t possibly point to an item, so you may as well stop at that point.

The following method is invoked when the provider needs to verify the existence of an item at the
specified path:

protected virtual bool ItemExists(string path);

The Item provider uses this callback as a frontline of defense before calling the ClearItem(), InvokeDe-
faultAction(),and GetItem() callbacks. This enables those methods to concentrate on performing the
action on the item and not worry about whether the item exists or not. In fact, this method is called
quite often by the other cmdlets for the container and navigation provider classes. It’s important that this
method support the different types of paths, as discussed earlier in the chapter.

The following is an example of what ItemExists () looks like for the xmlItemProvider included with
the sample code:

protected override bool ItemExists(string path)
{
base.WriteVerbose (string.Format (
"XmlItemProvider: :ItemExists (Path = '{0}')",path));

string npath = XmlProviderUtils.NormalizePath (path) ;
string xpath = XmlProviderUtils.PathNoDrive (npath) ;

XmlDriveInfo drive = XmlProviderUtils.GetDriveFromPath (path,base.ProviderInfo) ;

143

Chapter 5: Providers

if (drive == null)
{

return false;

XmlDocument xml = drive.XmlDocument;

if (xml.SelectSingleNode (xpath,drive.NamespaceManager) == null)
return false;

else
return true;

Let’s examine this method line by line:

WriteVerbose (string.Format (
"XmlItemProvider::ItemExists(Path = '{0}')" , path));

This is a personal preference, but I'm a big fan of providing a way to display the methods as they are
entered and the parameter values being passed (just like the old printf () days). By including this
call to WriteVerbose (), you can see the information by specifying the -verbose parameter when any
cmdlet that ends up calling ItemExists ()is executed. That happens to be get-item, clear-item, and
invoke-item.

Here’s an example of what the output of WriteVerbose () looks like when the -verbose parameter is
specified. Notice how the user-specified path “xmlItemProvider::foo:\Objs\one” is stripped of the
provider, and the provider-internal path “foo:\0Objs\one” is passed to the callback methods:

PS C:\Documents and Settings\Owner> get-item XmlItemProvider::foo:\Objs\one -ver
bose

VERBOSE: XmlItemProvider::ItemExists(Path = 'foo:\Objs\one')

VERBOSE: XmlItemProvider::GetItem(Path = 'foo:\Objs\one')

PSPath : providerlsnapin\XmlItemProvider::foo:\Objs\one
PSProvider : providerlsnapin\XmlItemProvider

PSIsContainer : False

attl : dudel

#text : blah

string npath = XmlProviderUtils.NormalizePath (path) ;

Although Windows PowerShell providers support both forward ‘/” and backslash ‘\” as path separators,
the XPath query syntax we use for retrieving items in our XML document only supports the forward
slash. This is a common scenario whereby some tweaking is needed by the provider to create a valid path
for searching its internal data store. Therefore, XmlProviderUtils.NormalizePath () simply converts all
back slashes to forward slashes and returns the resulting string.

string xpath = XmlProviderUtils.PathNoDrive (npath) ;

The XPath query string doesn’t know or care about provider names and drives, so we need to make
sure it begins with the root node of the xm1Document. However, provider paths may be fully qualified or
drive qualified, which means we need to strip the prepended provider or drive info from the path. For
example, “XmlItemProvider::drive:\root\childl” would become “\root\childl,” which is a valid
XPath query string. When we derive our provider from the container or navigation provider base class,

144

Chapter 5: Providers

the path values passed to ItemExists () may be fully qualified or drive qualified. We should handle
all the cases even though for now our xmlItemProvider only supports provider-qualified paths.

XmlDriveInfo drive = XmlProviderUtils.GetDriveFromPath (path,base.ProviderInfo) ;
if (drive == null)
{ return false; }

It turns out that even though the specified path may include the drive in it (drive: :\root\childnode),
the provider infrastructure doesn’t parse the path to determine the drive for providers that dervive
directly from ItemCmdletProvider. The ContainerCmdletProvider and NavigationCmdletProvider
classes have more logic in them that would parse the user-specified path and populate the pSDriveInfo
property on the cmdletProvider base class. Keep in mind, however, that for the item provider, this
doesn’t happen, so you need to extract the drive and then search the current drives for the provider to
get the current drive. That’s what this utility method does; and if the drive doesn’t exist, obviously the
item doesn’t exist, so you return false:

XmlDocument xml = drive.XmlDocument;
if (xml.SelectSingleNode (xpath,drive.NamespaceManager) == null)
return false;
else
return true;

Remember that we created our own XxmlDriveInfo class, which inherited from PSDriveInfo, so we could
store our own provider-specific data in it. This is where that becomes useful. Each drive is associated with
a particular xmlDocument, and we use the SelectSingleNode () method on the xmlDocument to retrieve
the items based on the path. This is a prime example of when the provider concepts are mapped

to the internal details of your data store. In the case of our sample XML provider, we're simply passing
the paths to the SelectSingleNode () method with some preprocessing that removes the drive and/or
changes ““\"” to ““/"".

If selectSingleNode () returns null, that means no nodes were found, which means the item doesn’t
exist. In TtemExists (), we use SelectSingleNode ()because we only care that at least one item exists.
In the other *-item cmdlet callback methods, we use SelectNodes () because a single path may return
multiple items.

Now take a look at GetItem():

protected override void GetItem(string path)
{
WriteVerbose (string.Format (
"XmlItemProvider:: GetItem (Path = '{0}')",path));

string npath
string xpath

XmlProviderUtils.NormalizePath (path) ;
XmlProviderUtils.PathNoDrive (npath) ;

XmlDriveInfo drive = XmlProviderUtils.GetDriveFromPath (path,base.ProviderInfo) ;
if (drive == null)

{

return;

XmlDocument xml = drive.XmlDocument ;

145

Chapter 5: Providers

XmlNodeList nodes = xml.SelectNodes (xpath,drive.NamespaceManager) ;

foreach (XmlNode node in nodes)
{
WriteItemObject (node, path, false);
}
}

You've probably noticed that the first couple of lines are the same as they are in ItemExists (). A good
developer would have put them in a separate method. Bad developer! Bad developer! Anyway, the thing
to note here is what you actually do with the nodes that are retrieved by the specified path:

foreach (XmlNode node in nodes)

{
WriteItemObject (node, path, false);

}

WriteItemObject ()is how we pass the items back to the user. Each item should be written into the
pipeline separately via a call to WriteItemObject (). We also pass the path and indicate whether

the item is a container, which is always false in the case of the item provider. As mentioned previ-
ously, a handful of extra properties are tacked onto your items as they are written to the pipeline. Two of
those properties (PSPath and PSIsContainer) are the values supplied in the call to WwriteItemObject ().

The following method is invoked when the user executes the invoke-item cmdlet for your provider:
protected virtual void InvokeDefaultAction(string path) ;

If this operation doesn’t apply to your provider, simply don’t override the method; the infrastructure will
indicate that your provider doesn’t support it. An example of where this action does make sense is for
the FileSystem provider. Invoke-item in that case will cause the application associated with the file’s
extension to launch with that file opened.

At this point, you're probably starting to see how you map the provider paths to our internal data store.
Of course, it will vary greatly upon your data store and how you actually identify the items in it. For
our sample XML provider, we use XPath queries as the glue between the provider paths and the XML
document that is our data store. The last method worth looking at shows how you perform the
clear-item for our sample XML provider. The setItem() method isn’t discussed here but it can be
examined by looking at the XmlItemProvider.cs sample code file.

protected virtual void ClearItem(string path) { ...}

This is called when the user invokes clear-item for this provider. The path supplied here is exactly
the same as specified at the command line. It is up to the provider to do any wildcard expansion or
path manipulation. Note that if the user uses the -1iteralPath parameter instead of -path, then escape
characters will not be interpreted. Remember that the escape character in PowerShell is the backtick. If
multiple paths are supplied to clear-item (-path takes a string[]), then this method is called back for
each path separately. This is true for all the callback methods for the *-item cmdlets that take a string|[]
as the path.

Once the item or items indicated by the path are retrieved, the developer must decide what the “’clear”

action means. Usually this means not deleting the item but emptying or removing the contents. This way,
get-item still returns an object but it has no value.

146

Chapter 5: Providers

Now let’s look at the ClearItem() callback method. This method retrieves any XML nodes pointed to by
the user-supplied path and “clears” them. In the case of our XML provider, clearing an item means
removing any child nodes but leaving the node intact. Notice that we call Shouldprocess () before
executing any action that would modify the internal data store:

protected override void ClearItem(string path)

{
WriteVerbose (string.Format ("XmlItemProvider::ClearItem(Path = '{0}')",path));

string npath XmlProviderUtils.NormalizePath (path) ;
string xpath = XmlProviderUtils.PathNoDrive (npath) ;

XmlNodeList nodes = GetXmlNodesFromPath (xpath) ;

// throw terminating error if we can't find any items at path
// This is unexpected since ItemExists() was already called and must have
// returned true for ClearItem() to even be invoked.

[===mmcosscosccoccoocososssoosooossoosrosesssesss
if (nodes == null || nodes.Count == 0)
{
ErrorRecord error = new ErrorRecord(new ItemNotFoundException(),
"ITtemNotFound", ErrorCategory.ObjectNotFound, null);
ThrowTerminatingError (error) ;
}

foreach (XmlNode node in nodes)
{
// ShouldProcess () enables use of -whatif & -confirm flags for clear-item
// If path returns more than a single XMLNode, we call ShouldProcess ()
// for each node not one call to ShouldProcess for the entire operation
[==——s=—cssocsoocooocoooooooossoossooosooosooosoooosoosssos0
if (base.ShouldProcess (node.Name))
{
node.RemoveAll () ;

Note the call to Shouldprocess () before we actually “clear” the xm1Node. How you “clear” items in each
data store is provider specific.

That’s it for the ItemProviderCmdlet class. We have our first cmdlets to access the items in our provider’s
data store, but the operations are limited. The next provider class enables even more functionality on top
of this class.

ContainerCmdletProvider

The ContainerCmdletProvider class derives from ItemCmdletProvider and adds support for sev-
eral more of the *-item cmdlets. It also introduces the concept of location via the set-location and
get-location cmdlets. With the item provider type, each item was identified by a path but there

is no relationship between the items — at least not through the cmdlets supported by ItemCmdlet-
provider. This changes with the ContainerCmdletProvider, which introduces the classical parent-child

147

Chapter 5: Providers

relationship. Like a binary tree in which each node may have child nodes, the items in the container
provider may have child items as well. Get-childitems is a new cmdlet for this provider that highlights
this fact. If the objects in your data store have any kind of hierarchical relationship, you should probably
at least derive from ContainerCmdletProvider. Read the introduction to NavigationCmdletProvider to
determine whether your provider should support navigation.

Like before, several callback methods are inherited, each corresponding to a specific cmdlet. In addition,
each of those has a callback method for dynamic parameters, which you may or may not need to override.
If you don’t have any dynamic parameters, then simply don’t override those methods.

Here’s a list of new methods inherited from ContainerCmdletProvider:

public abstract class ContainerCmdletProvider : ItemCmdletProvider

{

protected ContainerCmdletProvider () ;

// copy-item
protected virtual void Copyltem(string path, string copyPath, bool recurse);
protected virtual object CopyltemDynamicParameters (string path,

string destination, bool recurse);

// get-childitems

protected virtual void GetChildItems (string path, bool recurse);

protected virtual object GetChildItemsDynamicParameters (string path,
bool recurse) ;

// These methods get called before the other callbacks

protected virtual void GetChildNames (string path, ReturnContainers
returnContainers) ;

protected virtual object GetChildNamesDynamicParameters (string path) ;

protected virtual bool HasChildItems (string path) ;

// new-item

protected virtual void NewlItem(string path, string itemTypeName,
object newltemValue) ;

protected virtual object NewItemDynamicParameters (string path,
string itemTypeName, object newltemValue) ;

// remove-item

protected virtual void RemoveItem(string path, bool recurse) ;

protected virtual object RemoveltemDynamicParameters (string path,
bool recurse) ;

// rename-item

protected virtual void Renameltem(string path, string newName) ;

protected virtual object RenameltemDynamicParameters (string path,
string newName) ;

}
Each new cmdlet has its own callback method as well as an additional callback for dynamic parameters.

Nothing new there. Let’s look at some example code from our sample XML provider, included with the
sample code as XmlContainerProvider.cs.

148

Chapter 5: Providers

The class declaration is similar to the other providers except that we derive from a different base class:

[CmdletProvider ("XmlContainerProvider", ProviderCapabilities.ShouldProcess)]
public class XmlContainerProvider : ContainerCmdletProvider

{

Let’s examine some of the callback methods:

protected virtual void CopyItem(string path, string copyPath, bool recurse);

Copy-item is the first cmdlet that actually moves around items in the data store. Previously, we only
changed the value of items in the data store. Now with the cmdlets supported by ContainerCmdlet-
Provider, we will begin to move items around to different locations or paths. Let’s look at the code from
the sample XML provider:

protected override void Copyltem(string path, string copyPath, bool recurse)

{
WriteVerbose (string.Format ("XmlContainerProvider: :CopyItem(Path =
'{0}', CopyPath = '{1}', recurse = '{2}')", path, copyPath, recurse));

string xpath = XmlProviderUtils.NormalizePath (path) ;
XmlNodeList nodes = GetXmlNodesFromPath (xpath) ;

if (nodes == null || nodes.Count == 0)
{
ErrorRecord error = new ErrorRecord(new ItemNotFoundException(),
"TtemNotFound", ErrorCategory.ObjectNotFound, null) ;
WriteError (error) ;

XmlNode destNode = GetSingleXmlNodeFromPath (copyPath) ;
if (destNode == null)
{
ErrorRecord error = new ErrorRecord(new
ItemNotFoundException ("Destination item not found"),
"ITtemNotFound", ErrorCategory.ObjectNotFound, copyPath) ;
WriteError (error) ;

XmlDocument xmldoc = GetXmlDocumentFromCurrentDrive () ;

foreach (XmlNode nd in nodes)
{

if (base.ShouldProcess (nd.Name))

{
destNode.AppendChild (nd.Clone()) ;

149

Chapter 5: Providers

If you're paying close attention, you can see that I'm making a couple of assumptions here. In fact, there
are a few scenarios I'm not handling (I'm doing this on purpose, of course). Everything looks OK up
until the point where I retrieve the destNode from the copyPath. The code assumes that there is already
a node located at copyPath to copy the items to. In terms of the filesystem, I would be assuming that the
copyPath is a directory and that it exists, but in fact there are several situations that can occur here that a
provider should handle.

What we will discuss now are some of the boundary cases that may occur when the copy-item cmdlet
is being executed for your provider. These boundary cases are due to the existence or non-existence of
the copyPath and destNode parameters in the CopyItem() callback. These values are ultimately derived
from the command-line parameters of similar names for copy-item.

How you handle the following scenarios depends mostly upon the details of your provider. There

are probably some standard ways of dealing with these cases, and understanding how the built-in
PowerShell providers handle them (i.e., filesystem) might give you some insight about how your provider
should behave.

Let’s assume you have the following XML document for the sake of this discussion:

<root>
<one>blah</one>
<two>blah2</two>
<three>blah3</three>
</root>

Scenario1

There’s already an XML node at the place indicated by copyPath. In this case, you can simply copy the
XML nodes retrieved from path to that node (this is the scenario I've handled):

copy -path drive:/root/one -destination drive:/root/two

This operation copies the ““one” node and adds it as a child of the “two” node. This makes the XML
document look like the following (notice how the one node was copied inside the two node; it didn’t
copy over it):
<root>
<one>blah</one>
<two>blah2<one>blah</one></two>

<three>blah3</three>
</root>

Scenario 2

There’s not a node at the copyPath, but the copyPath up until the last item name exists. Using initial XML
doc again, the following operation would enact this scenario:

copy-item -path drive:/root/one -destination drive:/root/four

In this case, a new node should be placed under root with the name “four” and the inner text value of
“blah” (<four>blah</four>).

This scenario is not handled by the above CopyItem() code sample.

150

Chapter 5: Providers

Scenario 3

The copyPath doesn’t exist but neither does a parent. Again, assuming the initial XML doc, the following
command highlights this scenario:

copy-item -path drive:/root/one -destination drive:/foo/four

What should you do here? Should you write an error and fail to complete the operation? Should you
create the necessary items from the root of the document to the end node? In this case, a typical behavior
might be failure unless -force is specified. The presence of the -force indicates that the operation
should be completed unless there is a catastrophic failure preventing it from happening. Otherwise,
create or overwrite any items that need to be in order to finish.

Why the long example here? The reason is because I wanted to highlight the kinds of decisions that
you, as a developer, will have to make when writing your provider. The details of your provider will in
many cases dictate the behavior for some of the boundary cases when moving items around your data
store. Another question that needs to be answered for container providers is whether your copy-item
and move-item cmdlets support the -recursive flag. In most cases, a “move” action implicitly means
moving all the items within the container recursively. And with the “‘copy”” operation, usually you want
to allow the user to control whether to copy just the first level of items or the whole heirarchy of items
located recursively inside the container being copied. Again, this all depends on the internal details of
your provider’s data store and the relationships between the objects in it.

The notion of nested containers helps resolve some of these issues. All three of these scenarios have a
well-understood behavior when it comes to the filesystem, which is a navigational provider that supports
nested containers. That’s another thing to keep in mind when deciding which provider base class to
derive your provider from.

Now let’s look at the implementation of new-item. Notice that we had to check the existence of the
-Force parameter for the case where an item already exists at the path. Then, once we have every-
thing we need, we call ShouldProcess () before actually creating the item. In this sample code we
create an ErrorRecord and call writeError () if the parent XML node doesn’t exist. If the path were
“drive:\root\a\b,” the parent node would be located at “drive:\root\a.”” Without a valid parent node,
we can’t create a new XML node inside of it. One other option would be to create all nodes up to
and including the child node (“b” in this case). And looking at the FileSystem provider, that’s what
-Force does. It will create nested directories if needed when the -Force parameter is supplied. For our
sample XML provider I chose not to do that because it may create unwanted XML nodes in the XML
document.

protected override void Newltem(string path, string itemTypeName, object
newItemValue)
{
WriteVerbose (string.Format ("XmlNavigationProvider: :RemoveltemNewItem (Path =
"{0}', itemtype = '{1}', newvalue = '{2}'")",
path, itemTypeName, newltemValue)) ;

// first check if item already exists at that path
[l ====smsssssscoooooooooossoooosoorsossEe e as S S s
FFstring xpath = XmlProviderUtils.NormalizePath (path) ;

// we need to get the parent of the new node so we can add to its children

151

Chapter 5: Providers

// we do this by chopping the last item from the path if there isn't
already an item

// at the path. in which case we need to check force flag or error out

// for example: new item path = drive:/root/one/two

// the parent node would be at drive:/root/one

[=emmcscsscsscossssosssosooosssssosonon0mEEDs

XmlNode parent = null;

XmlNode destNode = GetSingleXmlNodeFromPath (xpath) ;

if (destNode != null)
{
parent = destNode.ParentNode;
if (base.Force)
destNode.ParentNode.RemoveChild (destNode) ;
else
{
// write error
ErrorRecord err = new ErrorRecord(new
ArgumentException("item already exists!"), "AlreadyExists",
ErrorCategory.InvalidArgument, path) ;
WriteError (err) ;

return;
}
}
else
{
parent = GetParentNodeFromLeaf (xpath) ;
}

// Need to handle case where the parent node doesn't exist
if (parent == null)
{

// write error

ErrorRecord err = new ErrorRecord (new

ItemNotFoundException ("ParentPath doesn't exist"), "ObjectNotFound",
ErrorCategory.ObjectNotFound, path);
WriteError (err) ;
return;

string endName = GetLastPathName (xpath) ;
XmlDriveInfo drive = base.PSDriveInfo as XmlDriveInfo;
XmlDocument xmldoc = drive.XmlDocument;

XmlNode newNode = xmldoc.CreateNode (itemTypeName, endName,
parent .NamespaceURI) ;

// lets call shouldprocess
if (ShouldProcess (path))

{
parent .AppendChild (newNode) ;

152

Chapter 5: Providers

NavigationCmdletProvider

This, the final provider class, derives from ContainerCmdletProvider and adds a few additional virtual

methods to override. The most important concept added by the navigational provider is the nested cont-
ainers and the ability to change locations among them. Just like directories in the filesystem, these containers
can be used as the current location (and in fact the pPSDriveInfo object has a CurrentLocation property

that stores this value) for performing operations on the items in your data store. The ability to use relative
paths from the current location saves a lot of typing and makes discovery of your provider much easier.

public abstract class NavigationCmdletProvider : ContainerCmdletProvider

{

protected NavigationCmdletProvider () ;

// used by the provider infrastructure as well as useful

// for you callback methods when handling container vs non-container operations
protected virtual string GetChildName (string path) ;

protected virtual string GetParentPath(string path, string root);

protected virtual bool IsItemContainer (string path);

// join-path
protected virtual string MakePath(string parent, string child);

// move-item

protected virtual void Moveltem(string path, string destination) ;

protected virtual object MoveltemDynamicParameters (string path,
string destination) ;

// used to create the handle realtive paths by the provider infrastructure
protected virtual string NormalizeRelativePath(string path, string basePath) ;
}

One of the most important things to remember is the support for relative paths. This means your callbacks
need to handle both relative and absolute paths. Luckily, you don’t need to go back and rewrite all the
methods we implemented earlier. This is because for navigational providers, the infrastructure inserts
extra callbacks that developers can override to create the appropriate full path from a relative path. The
next few methods help in achieving this.

The following methods are invoked by the provider infrastructure in various cases to construct the
appropriate path and/or put together the path from the container plus child item specified. In addition,
the NavigationCmdletProvider supplies a default implementation for these methods. These default
implementations work for any path syntax that only uses the forward slash and the backslash (/" and
“\") as path separators. If your provider is doing anything with its paths that violates this, you'll most
likely have to override one or more of them yourself.

The default implementations for these methods always normalize the path to use the backslash.
Because the XPath query strings we use only support the forward slash, we need to renormalize the
paths in our cmdlet callbacks. That’s why you'll notice that the XML provider always calls xm1Provider-
Utils.NormalizePath() first in every callback so that the path is in the right format for XmlNode
.SelectNodes () and XmlNode.SelectSingleNode ().

The following method returns the last childname from the supplied path:

protected virtual string GetChildName (string path) ;

153

Chapter 5: Providers

For example, if path=\root\pathl\path2, then this method returns path2. This is one of the virtual
methods that already has a default implementation. The default implementation works for paths that
only use the /" or “\"’ as path separators (i.e., the filesystem). Therefore, if the paths for your provider
follow the same format as the filesystem, then you won’t need to override this method.

This method returns the parent path for a given path:

protected virtual string GetParentPath(string path, string root);

This means everything to the left of the last path separator. Therefore, if path = \root\pathl\path2, this
method should return \root\pathl. This method is used by the other callbacks when relative paths are
supplied. It has a default implementation for “/”” and “\"" path separators.

Here is another method that has a default implementation for the //”” and “\”" path separators:

protected virtual string NormalizeRelativePath(string path, string basePath) ;

This method actually converts paths beginning with “.\"” or “..\"” to the correct relative path. If you
override this method, then be sure to check for those special path tokens.

This next callback is invoked when the user executes join-path:

protected virtual string MakePath(string parent, string child);

It is also the method that is called to create the full path that is passed to the actual cmdlet callback. The
provider infrastructure invokes this method and ItemExists () for almost every provider cmdlet. As

a result, special care should be taken to ensure that these two methods are reliable and handle all the
possible path types. There is a default implementation of MakePath () that supports “/”” and ““\"" as
the path separators.

Because the XPath queries we’ve been using need to use the forward slash, as long as you make sure
to normalize the path in all the other callback methods by replacing ““\"” with “/”" you're fine. You can
use the default implementation of Makepath () and the other methods and you're only one step from
supporting navigation and relative paths.

You do need to override the IsItemContainer () callback:

protected virtual bool IsItemContainer (string path);
This is called by set-location to ensure that you're trying to move to an actual container.

The following sample code is from our XML sample provider. It determines whether an item is a con-
tainer based on the NodeType property of the XmlNode reference. This method doesn’t check whether
or not the container has any items in it. Its sole purpose is to return a Boolean indicating whether it’s a
container or not:

protected override bool IsItemContainer (string path)

{
// see i1f item exists at path and indicate if it is container
// if its a container, we can set-location to it
string xpath = XmlProviderUtils.NormalizePath (path) ;

154

Chapter 5: Providers

XmlNode node = GetSingleXmlNodeFromPath (xpath) ;

if (node == null)
return false;
else
return IsNodeContainer (node) ;

private bool IsNodeContainer (XmlNode xmlNode)

{
// only certain types of XmlNodes can be containers
if ((xmlNode.NodeType == XmlNodeType.Entity) ||

}

(xmlNode .NodeType == XmlNodeType.Element) |
(xm1Node.NodeType == XmlNodeType.Document))

return true;

else

{

return false;

Now let’s look at the callback for the move-item cmdlet:

protected virtual void Moveltem(string path, string destination);

The other new callback in the NavigationCmdletProvider class is MoveItem (), which is called when the
user executes the move-item cmdlet. Let’s take a look at the implementation for that callback. If you think
about what a move operation really does, it’s the same as a copy and remove. Thus, we simply combined
the code from those two callbacks previously defined in the ContainerCmdletProvider. Notice the call
to shouldProcess () before each potential change to the XML document.

protected override void Moveltem(string path, string destination)

{

"{0}",

WriteVerbose (string.Format ("XmlNavigationProvider: :Moveltem(Path =
destination = '{1}')", path, destination));

string xpath = XmlProviderUtils.NormalizePath (path);
XmlNodeList nodes = GetXmlNodesFromPath (xpath) ;

XmlNode destNode = GetSingleXmlNodeFromPath (destination) ;
XmlDocument xmldoc = GetXmlDocumentFromCurrentDrive () ;
foreach (XmlNode nd in nodes)

(if (base.ShouldProcess (nd.Name))

{
destNode.AppendChild(nd.Clone()) ;

155

Chapter 5: Providers

// remove node from old location
nd.ParentNode.RemoveChild (nd) ;

IPropertyCmdiletProvider

Implementing this interface declares support for the get-itemproperty, set-itemproperty, and
clear-itemproperty cmdlets. Each of the cmdlet callback methods also has an associated dynamic
parameter callback that must be overridden because it’s an interface. To indicate that the cmdlet has no
dynamic parameters, simply return NULL.

Let’s look at the methods for the interface:

public interface IPropertyCmdletProvider
{
// clear-itemproperty
void ClearProperty (string path, Collection<string> propertyToClear) ;
object ClearPropertyDynamicParameters (string path, Collection<string>
propertyToClear) ;

// get-itemproperty

void GetProperty(string path, Collection<string> providerSpecificPickList) ;

object GetPropertyDynamicParameters(string path, Collection<string>
providerSpecificPickList) ;

// set-itemproperty
void SetProperty(string path, PSObject propertyValue) ;
object SetPropertyDynamicParameters (string path, PSObject propertyValue) ;

For some sample code that illustrates how to use this interface, I decided to implement a minimalistic
FileSystem provider. In fact, the SampleFileSystemProvider class only supports get-item and the
property and content interfaces. The file and directory items in the FileSystem provider have a static set
of properties; and, furthermore, we restrict access to certain ones. This may or may not be the case for
your provider but it makes for an interesting example.

In designing the sample XML provider, I was considering treating XML attributes as properties. The
attributes can be changed at runtime, however, which indicates the need for the IDynamicProperty-
CmdletProvider interface not the IPropertyCmdletProvider interface. The former allows runtime
properties, whereas the latter doesn’t. Thus, I chose to use the well-known FileSystem as an example.

Let’s take a closer at look the callback for get-itemproperty:

public void GetProperty(string path, Collection<string> providerSpecificPickList)
{

WriteVerbose (string.Format ("SampleFileSystemProvider: :GetProperty (path =
'{0}')", path));

// TODO: We should probably do more argument preprocessing here but
// more importantly, we're not handling any exception that might occur as

156

Chapter 5: Providers

// a result of accessing the properties of the file. There may be a FILE I/O
// or permissions problem. We should add a try-catch block that calls

// ThrowTerminatingError () if any exceptions are thrown.

[==mmmmssssosccosssssssonmm

FileSystemInfo fileinfo = null;
// First check if we have a directory,

DirectoryInfo dir = new DirectoryInfo (path);
if (dir.Exists)
{

fileinfo = dir;

// now check for file

[====sc=sscocsoos=s

FileInfo file = new FileInfo (path) ;
if (file.Exists)

{

fileinfo = file;

// item doesn't exist at path, call WriteError() and do nothing else
if (fileinfo == null)
{
ErrorRecord error = new ErrorRecord(new ArgumentException (
"ITtem not found"), "ObjectNotFound", ErrorCategory.ObjectNotFound, null);
WriteError (error) ;

else

// create PSObject from the FileSystemInfo instance
PSObject psobj = PSObject.AsPSObject (fileinfo) ;

// create the PSObject to copy properties into and that we will return
PSObject result = new PSObject();

foreach (string name in providerSpecificPickList)

{

// Copy all the properties from the original object into 'result'
PSPropertyInfo prop = psobj.Properties[name];
object value = null;
if (prop != null)
{

value = prop.Value;
}
else
{

WriteWarning (string.Format ("Property name

'{0}' doesn't exist for item at path '{1}'",
name, path));

157

Chapter 5: Providers

}

result.Properties.Add (new PSNoteProperty (name, value)) ;

WritePropertyObject (result, path);

The first thing we do is try to retrieve the item specified by the path. The ItemExists () method is called
before this but we still check for the case where no item is located at the path. Once we have an item,
we create a PSObject from it. Using PsObject makes it much easier to check the public properties of the
object. PSObject internally creates an internal hashtable for all the public properties via reflection and
exposes them through its Properties collection.

Once we determine whether the property we’re looking for exists or not, we add a new PSNoteProperty
for each property to a blank pSobject. This PSObject is then written to the pipeline via WriteProper-
tyObject (). As indicated in the comments, you treat a non-existent property as a warning and add a
NULL value to the returned result for the property. How you handle this case will vary from provider to
provider.

IDynamicPropertyCmdietProvider

This interface derives from IPropertyCmdletProvider, so your provider must implement the meth-
ods defined in both. As previously stated, the ““dynamic’” properties can be added and removed at
runtime. Although an example is not provided here, the code is very similar to the IPropertyCmdlet-
Provider methods. Any property values added, changed, or removed should be written to the pipeline
via WwriteItemProperty () asa PSObject so that users specifying the —-pPassThru parameter can see them.

Here’s a sample of the new methods for this interface:

public interface IDynamicPropertyCmdletProvider : IPropertyCmdletProvider
{
// copy-itemproperty
void CopyProperty (string sourcePath, string sourceProperty,
string destinationPath, string destinationProperty) ;
object CopyPropertyDynamicParameters (string sourcePath,
string sourceProperty, string destinationPath, string destinationProperty) ;

// move-itemproperty
void MoveProperty (string sourcePath, string sourceProperty,
string destinationPath, string destinationProperty) ;
object MovePropertyDynamicParameters (string sourcePath,
string sourceProperty, string destinationPath, string destinationProperty) ;

// new-property

void NewProperty(string path, string propertyName,
string propertyTypeName, object value) ;

object NewPropertyDynamicParameters (string path, string propertyName,
string propertyTypeName, object value) ;

// remove-property

void RemoveProperty (string path, string propertyName) ;
object RemovePropertyDynamicParameters (string path, string propertyName) ;

158

Chapter 5: Providers

// rename-property

void RenameProperty (string path, string sourceProperty,
string destinationProperty) ;

object RenamePropertyDynamicParameters (string path,
string sourceProperty, string destinationProperty) ;

}

IContentCmdletProvider

By implementing this interface, your provider is declaring support for the get-content, set-content,
add-content, and clear-content cmdlets. These cmdlets use a row /stream-based interface to read or
write data to the item in your data store. In addition to callback methods for each cmdlet, two inter-
faces must be implemented to actually do the reading and writing to the item. These new interfaces are
IContentReader and IContentWriter and they are returned by the GetContent () and SetContent ()
methods, respectively.

Let’s look first at the IContentCmdletProvider interface methods:

public interface IContentCmdletProvider
{
// clear-content
void ClearContent (string path) ;
object ClearContentDynamicParameters (string path) ;

// get-content
IContentReader GetContentReader (string path) ;
object GetContentReaderDynamicParameters (string path) ;

// set-content, add-content
IContentWriter GetContentWriter (string path) ;
object GetContentWriterDynamicParameters (string path);

}
Here is the IContentReader interface:

public interface IContentReader : IDisposable

{
void Close();
IList Read(long readCount) ;
void Seek(long offset, SeekOrigin origin);

}

Here is IContentWriter:

public interface IContentWriter : IDisposable

{
void Close();
void Seek(long offset, SeekOrigin origin) ;
IList Write(IList content) ;

}

Let’s examine what happens when the user executes the get-content cmdlet:

PS C:\Documents and Settings\Owner>get-content foo.txt

159

Chapter 5: Providers

1. We're in the FileSystem provider here, so ItemExists () is invoked to make sure the
item exists

2. If the item exists, then the GetContentWriter () method is invoked and an object
implementing the IContentReader interface is returned.

3. IContentReader.Read (0) is invoked. When the readCount is zero or negative, that indi-
cates to read to the end. In the case of the FileSystem provider, it reads CRLF delimited
lines from the file until it reaches EOF (End of File). Unless the -encoding parameter is
specified. What encoding parameter, you ask? Well, the FileSystem provider has an
-encoding dynamic parameter defined for all its *-content cmdlets. This controls whether
it reads the file as text or as binary, in which case it reads it by blocks rather than lines of text.
This is just another example of how providers differ and how dynamic parameters come in
handy. The returned IList of objects are all then written to the pipeline by the provider
infrastructure, so the developer never actually calls WriteItemObject () or anything sim-
ilar. They return an IContentReader from GetContentReader () with the Read () method
implemented, which returns a collection of objects that are written to the pipeline.

Set-content and add-content are similar but they call GetContentwWriter (), which returns an
IContentWriter, and the write () method is called on that instance. The difference here, however, is
that set-content replaces the current content, while add-content appends. Following is the order of
callbacks for add-content:

1“ ItemCmdletProvider.ItemExists ()

2 IContentCmdletProvider.GetContentWriter ()
3. IContentWriter.Seek (0, SeekOrigin.End)
4

IContentWriter.Write(IList content): The content parameter here is whatever the user is
specifying as -value when calling add-content.

Now let’s look at the methods for our minimalistic FileSystem provider when we execute get-content
(taken from SampleFileSystemProvider.cs). Let’s use the following command line to walkthrough the
order of callbacks by the provider infrastructure:

PS C:\Documents and Settings\Owner > set-content samplefilesystemprovider::c:\examples
\foo.txt “foo”’

public IContentWriter GetContentWriter (string path)
{

WriteVerbose (string.Format ("SampleFileSystemProvider: :
GetContentWriter (path = '{0}')", path));

// First check if we have a directory, throw terminating error because
// directories have no content
[l ====cssscssccocsossooooscoosossoos
DirectoryInfo dir = new DirectoryInfo (path) ;
if (dir.Exists)
{
ErrorRecord error = new ErrorRecord(new
InvalidOperationException ("Directories have no content!"),

160

Chapter 5: Providers

"InvalidOperation", ErrorCategory.InvalidOperation, path) ;
ThrowTerminatingError (error) ;

// now check for file

[==mecccosccoomssss
if (File.Exists(path))
{
// TODO: handle exceptions thrown from ctore which calls
// File.CreateText (). Catch them and call WritError ()
[==—=—cosscosscossoosooosooososos
return new FileContentWriter (path, this);
}
else

return null;

The ItemExists () method callback from ItemCmdletProvider only validates that the item exists. In
our GetContentliriter () callback, we need to verify that the item has content that can be set. In our
case, directories are items that don’t support content, so we should produce the appropriate error. Once
we're past that, we create a FileContentWiriter instance and return it. We also pass a reference to the
current provider. That way, the writer may use its methods and properties for easily performing its write
operations and for error handling.

This sample code shows the constructor and write () method for the FileContentiiriter class we're
creating to support the set-content and get-content cmdlets.

public class FileContentWriter : IContentWriter
{

string _path;

TextWriter _writer;

CmdletProvider _provider;

public FileContentWriter (string path, CmdletProvider provider)
{

_path = path;

_writer = File.CreateText (_path);

_provider = provider;

public System.Collections.IList Write(System.Collections.IList content)
{
_provider.WriteVerbose ("FileContentWriter.Write()");
foreach (object obj in content)
{
_writer.WriteLine("{0}", obj);
}

return content;

The write () method iterates through the objects and writes them as strings to the file. A more robust
write method would handle binary data and not assume that each line should be CRLF delimited.

161

Chapter 5: Providers

However, the main point of the example here is to highlight the boilerplate code needed to support
the *-content cmdlets for a provider.

ISecurityDescriptorCmdletProvider

This interface has methods for setting and retrieving the ACLs (Access Control Lists) on the items in your
data store. The ObjectSecurity class is a standard .NET class from which the security descriptor for
your item must derive. For example, the FileSystem provider uses FileSecurity and Directory-
Security objects, which derive from ObjectSecurity and are also included in the .NET Framework.
FileInfo and DirectoryInfo objects have methods for getting and setting the AccessSecurity for the
file or directory they represent.

public interface ISecurityDescriptorCmdletProvider
{

// get-acl

void GetSecurityDescriptor (string path, AccessControlSections
includeSections) ;

ObjectSecurity NewSecurityDescriptorFromPath (string path,
AccessControlSections includeSections) ;

ObjectSecurity NewSecurityDescriptorOfType (string type, AccessControlSections
includeSections) ;

// set-acl
void SetSecurityDescriptor (string path, ObjectSecurity
securityDescriptor) ;

}

Designh Guidelines and Tips

Here are some guidelines and things to keep in mind when implementing your provider:

162

Q Itis most important to determine which base class and optional interfaces to derive from.
Trying to shoehorn too much stuff into one of the less feature-rich provider types isn’t good,
and neither is using a more advanced provider interface but only supporting a small fraction
of its operations.

0 Path syntax: Make sure you understand how to convert between the Windows PowerShell paths
and your provider internal paths.

a If you declare a ProviderCapability, make sure you actually implement it. In addition, make
sure you support it for all the operations to which it applies.

0O Remember that dynamic parameters exist. If you're having trouble figuring out how to add extra
information via the path syntax, maybe you should keep the path syntax as is and add a dynamic
parameter for some extra context.

0 The SessionState object enables you to interact with the shell via APIs to access things such as
variables and functions, and to execute arbitrary scripts and even provider-specific commands.
Keep this in mind, explore the APIs of the SessionState class and the classes it holds, and you
might find an elegant solution when facing a roadblock in developing your provider.

Chapter 5: Providers

Q Deriving from PsDriveInfo and adding your own properties to the new class is a good way to
persist information for a drive about the data store it represents.

Q Use the appropriate methods for error handling, rather than throw exceptions from the
callback methods: ThrowTerminatingError () for operation ending errors and WriteError ()
for nonfatal errors.

0 Look at the methods on cmdletProvider to see what other information or useful things exist.
Prompting or user feedback can be handy as well. Use WiriteProgress () for lengthy operations.
Use ShouldContinue () for a boundary case that you're not sure how to handle. This prompts the
user for the course of action.

Summary

We covered a lot of material in this chapter. There are a lot of classes, cmdlets, and concepts associated
with PowerShell providers. It is hoped that you now have the knowledge in hand to begin implement-
ing your own providers that do cool and amazing things. Based on the functionality and features you
want your provider to support, you will choose one of the following base classes from which to derive
your provider:

0 ItemCmdletProvider: Supports access to items identified by unique paths
0 ContainerCmdletProvider: Supports the concept of containers
O NavigationCmdletProvider: Allows navigation of the provider and keeps track of the user’s

current location in the provider

Remember that all of the preceding classes derive from DriveCmdletProvider, which ultimately inherits
from cmdletProvider. These two base classes offer essential functionality for your provider, but they
aren’t very useful by themselves. You really should choose one of the aforementioned three classes to
derive from.

In addition to the base provider type, your provider can implement from a set of optional interfaces:
Q IPropertyCmdletProvider/IDynamicPropertyCmdletProvider: Supports static/runtime

properties of the items in your provider

0 IContentCmdletProvider: Supports stream-based or row-based access to the internal content of
the items in your provider

Q ISecurityDescriptorCmdlet: Controls access/security to the items in your provider

Paths and drives apply to all provider types, and the format of the paths your provider supports is
based on the base provider type. You should also determine which “capabilities”” your provider sup-
ports and be sure to implement support for these if you include them in your provider class declaration.
Finally, provide consistent and robust error handling for your provider. If users can’t understand why
an operation in your provider failed, they will get frustrated and your support calls will increase.

163

Hosting the PowerShell
Engine in Applications

Assuming you've tried out Windows PowerShell prior to reading this, you're familiar with
PowerShell’s console host, which is the user interface that shows you the prompt, accepts your
commands, and displays their results. In most command shells, no distinction is visible between
the front-end application and the back-end execution engine — to the user, it’s all one monolithic
executable.

From a command-line user’s perspective, the same might seem true of Windows PowerShell. To
the NET developer, however, the PowerShell execution engine exposes a public API that enables it
be called independently of the console host, providing a powerful means of integrating PowerShell
functionality into .NET applications.

In this chapter, you'll learn how the PowerShell engine’s public API can be used for integrating
PowerShell into managed code applications. Along the way, you'll be introduced to several classes
and concepts that make this possible.

Runspaces and Pipelines

The fundamental component of the engine API is the Runspace class. An instance of the Runspace
class represents an instance of the PowerShell engine, and contains its own set of variables, drive
mappings, functions, and so on, which are collectively referred to as the runspace’s session state. The
runspace provides an interface for loading cmdlets, snap-ins, and variables, as well as methods for
creating new pipelines in the runspace.

To run a command line in a runspace, you create and then invoke an instance of the Pipeline
class. You can think of an instance of the Pipeline class as an object representation of a PowerShell
command line, containing individual commands and their parameters and exposing entry points
and a set of input, output, and error pipes.

Chapter 6: Hosting the PowerShell Engine in Applications

The engine’s public API provides a range of ways to invoke pipelines, from very expedient one-liners to
ways that provide you with precise control over the runspace and pipeline. As you'll see, though, there’s
a trade-off between expedience and efficiency.

Getting Started

To use the PowerShell engine API from a .NET application, you need to reference the
System.Management . Automation assembly installed by PowerShell and the Windows SDK. If you're
not ready to install the Windows SDK, you can find the System.Management . Automation assembly in the
global assembly cache (GAC) by running the following command from the PowerShell

command line:

Shost.GetType () .Assembly.Location

Once you've created the reference, add the following “using’” directives to your source code file:

using System.Management.Automation;
using System.Management.Automation.Runspaces;
using System.Collections.ObjectModel;

The System.Management .Automation namespace contains fundamental types such as PSObject and
RuntimeException. System.Management.Automation.Runspaces contains the public types for runspaces
and pipelines, and System.Collections.ObjectModel contains the generic collection type that pipelines
use to return their results.

Executing a Command Line

Most programming language runtimes include some facility for executing commands as though they
were entered on the operating system’s command line. You may be familiar with the system() function
in Perl, or the SHELL command in QBasic, for example. This section discusses ways you can use the
PowerShell engine API to execute PowerShell commands.

Using Runspacelnvoke

The simplest way to execute a command line in the PowerShell engine is to invoke it directly using the
RunspaceInvoke class. An instance of RunspaceInvoke encapsulates the basic functionality of the Run-
space and Pipeline classes, and eliminates most of the work involved in creating pipelines, managing
1/0, and so on.

This comes at a price, however, because the RunspaceInvoke class isolates the application from the
more flexible API provided by Runspace and Pipeline. That said, the RunspaceInvoke class provides

a simple, usable interface when all you want to do is execute a command line and synchronously receive
the results.

To run a command via RunspaceInvoke, you first need to create an instance of RunspaceInvoke. The type

has four constructors, which enable you to build your RunspaceInvoke object from nothing, a pre-existing
runspace, a RunspaceConfiguration, or a console file. RunspaceConfiguration and console files are

166

Chapter 6: Hosting the PowerShell Engine in Applications

discussed later in this chapter. For now, just use the default constructer, which internally creates a
runspace with a default configuration:

RunspacelInvoke invoker = new Runspacelnvoke();

Having created an instance of RunspaceInvoke, you now work with it using the Invoke () method. There
are three overloads of Invoke (), which give you varying levels of control over the input and output of
the command line. The simplest of the three just accepts a script block as a string parameter and returns
a collection of results:

Collection<PSObject> results = invoker.Invoke ("get-process");

The results are provided as a generic collection of PSObject instances. In the next section, you'll learn
how to use PSObject; but for now, let’s assume that you just want to display the results to a user on the
console, using the text returned by ToString():

foreach (PSObject thisResult in invoker.Invoke ("get-process"))
{
Console.WriteLine (thisResult.ToString());

}

The other two overloads of the Invoke method enable you to pass in an IEnumerable collection of input
and specify an output parameter of type IList to receive the output of the error pipe. These correspond
to the input and error pipes you get when you use the PowerShell command line. As an example, you
could use the input pipe to pass an array of integers to the sort-object cmdlet, and then display the
output. Note that a final piece of glue is necessary for the script block to pick up the input, and that’s to
add "$input |" to the beginning:

int[] input = {3, 7, 1, 3};
foreach (PSObject thisResult in invoker.Invoke ("$input \ sort-object", input))
{
Console.WriteLine (thisResult.ToString());
}

The final overload for Invoke () enables you to receive the results of the error stream. Non-terminating
errors that occur during the execution of the pipeline are accumulated here. Later in this chapter, you'll
learn about the structure of these errors and how to use them. For now, as with Psobject, you can just
use the ToString () method to retrieve the messages. In addition, if you need to retrieve the error output
but don’t want to specify input, you can pass null to the input parameter of the last overload.

The following console application demonstrates the use of the output, input, and error pipes using
RunspaceInvoke with the default runspace configuration. The strings "system", "software", and "secu-
rity" are passed as input and the get-item cmdlet uses the strings to look for an item under HKLM: \.
The third string, "security", will result in a non-terminating error, as the HKLM\Security Registry key is
ACLed to prevent reading;:

using System;
using System.Collections;
using System.Collections.ObjectModel;

using System.Management.Automation;

namespace RunspaceInvokeSamplel

167

Chapter 6: Hosting the PowerShell Engine in Applications

class Program
{
static void Main(string[] args)
{
RunspacelInvoke invoker = new RunspaceInvoke();
string[] input = { "system", "software", "security" };
IList errors;
string scriptBlock =
"$input | foreach {get-item hklm:\\$_}";

foreach (PSObject thisResult in

invoker.Invoke (scriptBlock, input, out errors))
{ Console.WriteLine ("Output: {0}", thisResult);
I]éoreach (object thisError in errors)
{ Console.WriteLine("Error: {0}", thisError);
}

Using Runspace and Pipeline

Another way to execute a command line in the PowerShell engine is to create a Pipeline object, and then
invoke it. A Pipeline object is created by building it programmatically or from a script block. A script
block is simply a pipeline in string form, such as what a user would enter on the console, as shown here:

"cale"

You can’t create a pipeline from this script block yet, however, because pipelines are created using the
CreatePipeline methods of a runspace instance, and we don’t have a runspace. To create a runspace, use
the static CreateRunspace () method of the RunspaceFactory class. You can’t create an instance using
“new’”” because Runspace is actually a base class that defines the interface, and the object you get back
from CreateRunspace is an instance of a derived class called LocalRunspace. This is to enable future
expansion of the engine API, but with PowerShell 1.0 you always deal with LocalRunspaces.

CreateRunspace () has overloads that enable you to pass in RunspaceConfiguration and Host objects,
but for this example don’t pass CreateRunspace () any arguments — we’ll use the default host and
configuration for now:

Runspace runspace = RunspaceFactory.CreateRunspace () ;

Now that you have an instance of Runspace, the next step is to call Open () on the runspace to set it in a
state that allows execution. The runspace can actually create pipelines before it's opened, but if you try
to execute a pipeline from a runspace that hasn’t been opened, an exception will be thrown. Here is the
call to open ():

runspace.Open () ;

The Runspace class has a method called CreatePipeline() that creates and returns a Pipeline object.
For this example, we'll use the overload of CreatePipeline (), which accepts a script block as a string.

168

Chapter 6: Hosting the PowerShell Engine in Applications

PowerShell’s parser converts the string to a parse tree automatically. Another overload of
CreatePipeline () is available, which takes no arguments and returns an empty pipeline, and which
can be programmatically constructed from Command objects, but this is discussed later in the chapter.
For now, we'll just create a pipeline from a string:

Pipeline pipeline = runspace.CreatePipeline("calc");

A second overload of Createpipeline () accepts a script block and a Boolean parameter that indicates
whether the script block should be added to the command history of the runspace. If this parameter

is omitted or set to false, the script block will not be added to the history. Only if it is explicitly specified
as true will the history be modified. Pipelines created with this parameter set to true are recorded

in the command history of the runspace when they are invoked and can be retrieved later using the
*-history cmdlets.

To execute the pipeline, call the pipeline’s Invoke () method. The Invoke () method blocks until execution
of the pipeline has completed, after which control returns to the calling program. Another overload of
Invoke () accepts a collection of input objects, and a nonblocking invoke method called InvokeaAsync ()
is also available, but these are discussed later in the chapter. For now, we'll call Invoke () with no argu-
ments. If you compile and run this, an instance of calc.exe should appear on your desktop:

pipeline.Invoke();

Because the "calc" command is at the end of the pipeline and is a GUI application, the PowerShell
engine won't wait for it to finish executing before returning from Invoke (). The same behavior
can be observed from the PowerShell command line — if you type calc and press Enter, calc.exe
opens but PowerShell immediately returns to the prompt. If you recompile with the script block

" [Threading.Thread] : : Sleep(15000) " instead of "calc", you will see that Invoke () takes fifteen
seconds to return.

Here is the complete code for this example:

using System;
using System.Management.Automation;
using System.Management.Automation.Runspaces;

namespace PSBook.Chapter6
{
class Samplel
{
static void Main(string[] args)
{
// Create and open a runspace that uses the default host
Runspace runspace = RunspaceFactory.CreateRunspace() ;
runspace.Open() ;

// Create a pipeline that runs the script block "calc"
Pipeline pipeline = runspace.CreatePipeline("calc");

// Run it
pipeline.Invoke();

169

Chapter 6: Hosting the PowerShell Engine in Applications

Using the Output of a Pipeline

Usually, when you run a command in the shell, it produces output. Commands in traditional shells
produce their output as text, and PowerShell commands produce their output as objects. The output of a
command is written to one or more streams or pipes of output. In traditional environments such as DOS
and Unix, a command has an output stream and an error stream. PowerShell follows this model, and a
PowerShell pipeline has an output pipe and an error pipe.

If you use the PowerShell engine API to invoke a pipeline, in many cases your calling program needs to
receive and process the pipeline’s output. This section describes how you can retrieve this output from
synchronous and asynchronous pipeline invocations.

The Return Value of Invoke()

The Invoke () method of the Pipeline class has a return type of Collection<PSObject>, which means
it returns a generic collection of PSObject objects. This is where the first and third ““using” directives
described in the previous section come into play. PSObject is declared in the System.Management.
Automation namespace, and Collection<T> comes from System.Collections.ObjectModel.

The Invoke () method returns a collection of PSObject objects, rather than raw .NET objects, because
the PowerShell environment allows you to decorate objects with arbitrary properties and methods, and
PSObject provides an extended interface by which these extensions can be used.

To retrieve the collection returned by Invoke(), just define a new variable of type
Collection<PSObject> and assign Invoke ()’s return value to it, as shown here:

Collection<PSObject> results = pipeline.Invoke();

Once the pipeline has finished and the result has been retrieved, you can enumerate it:

foreach (PSObject thisResult in results) {...}

Using PSObject Objects Returned from a Pipeline

When using the results of Invoke (), it’s tempting to go straight to the BaseObject property of the
PSObject object and treat everything like a native .NET object. There are a couple of reasons you should
avoid this, however.

First, depending on the script block that was executed to produce the set of results, the resulting objects
may have been decorated with properties and methods that are inaccessible from the BaseObject. To
access these members, you need to do so by proxy, through the Properties and Methods collections of
the PSObject class.

Second, depending on the implementation of the runspace, the BaseObject might not exist, or it might
be of a wholly unexpected type. In PowerShell version 1, the only kind of runspace is LocalRunspace,
but someday your code could find itself parsing a collection of Psobject objects from another imple-
mentation of Runspace that returns deserialized objects, or objects that are completely implemented via
pSobject methods and properties. Unless your code accesses the members through the interface that
PSObject exposes, it can malfunction.

170

Chapter 6: Hosting the PowerShell Engine in Applications

Handling Terminating Errors

In the style of traditional Unix and DOS command-line applications, PowerShell pipelines output
non-terminating error information through an error pipe. However, terminating errors from commands,
parsing failures, and other engine errors are surfaced to the hosting application through managed excep-
tions during the call to Invoke (). In general, errors are wrapped in instances of System.Management.
Automation.RuntimeException, so the call to Invoke () should be wrapped in a try. . .catch block:

Collection<PSObject> results = null;

try
{

results

}

= pipeline.Invoke();

catch (RuntimeException e)

{

The following example shows a host application that creates a pipeline, retrieves the results of the asyn-
chronous Invoke () call, handles RuntimeExceptions thrown by the PowerShell engine, and writes the
BaseObject of each result to the console:

using System;

using System.Collections.ObjectModel;

using System.Management.Automation;

using System.Management.Automation.Runspaces;

namespace PSBook.Chapter6

{

class Sample2

{

static void Main(string[] args)

{

// Create and open a runspace that uses the default host
Runspace runspace = RunspaceFactory.CreateRunspace() ;
runspace.Open() ;

// Create a pipeline that runs a script block
Pipeline pipeline = runspace.CreatePipeline("dir c:\\");

// Invoke the pipeline in a try...catch and save the
// collection returned by Invoke()
Collection<PSObject> results = null;
try
{
results = pipeline.Invoke();
}
catch (RuntimeException e)
{
// Display a message and exit if a RuntimeException is thrown
Console.WriteLine ("Exception during Invoke(): {0}, {1}",
e.GetType () .Name, e.Message);
return;

171

Chapter 6: Hosting the PowerShell Engine in Applications

// Display the BaseObject of every PSObject returned by Invoke()
foreach (PSObject thisResult in results)

{
Console.WriteLine("Result is: {0}", thisResult.BaseObject);
}

Input, Output, and Errors for Synchronous
Pipelines

The pipeline class provides three properties, Input, Output, and Error, which enable a hosting applica-
tion to provide input and receive output and non-terminating errors. In addition to the Input property,
input can be passed as an IEnumerable collection to the synchronous Invoke () method.

The input pipe is an instance of the System.Management.Automation.Internal.ObjectWriter class,
and provides a Write () method for adding objects to the pipeline. The write () method is type-agnostic
regarding the input object, so objects of any type can be passed to it.

The output pipe is an instance of the System.Management.Automation.Internal.PSObjectReader class.
It provides methods for synchronous and asynchronous reading, peek, and read-to-end operations.
Because the output pipe returns its results as PSObject objects, rather than native .NET objects, the read
methods are strongly typed to return PSobject objects and generic collections of PSObject.

The error pipe is an instance of the System.Management . Automation. Internal.ObjectReader class. Like
the input pipe, it is type-agnostic, so its read methods return object and generic collections of Object.
In practice, however, objects returned by the error pipe will usually be of type System.Management.
Automation.ErrorRecord.

Passing Input to Your Pipeline

To pass input to a synchronously executed pipeline, you can add the input to a collection that implements
IEnumerable and pass it to the pipeline’s Invoke () method. However, if your pipeline was created
directly from a script block, as in the previous examples, the input won’t be automatically piped into the
first command in the script block, but will be provided to the script block as the $input variable. Later
in the chapter, you will learn how to programmatically build a pipeline from individual commands, in
which case the input is sent directly to the first command. Until then, here is the code for sending input
to a synchronous pipeline created from a script block:

Pipeline pipeline = runspace.CreatePipeline("$input | sort-object");
Collection<int> input = new Collection<int>;

input.Add(3) ;

input.Add(1l);

input.Add(2) ;

pipeline. Invoke (input) ;

In this example, notice that the input is piped to the sort-object cmdlet by adding the $input variable
to the beginning of the pipeline.

172

Chapter 6: Hosting the PowerShell Engine in Applications

You also can use the Pipeline class’s Input property to individually pipe objects into the pipeline. The
utility of this isn’t immediately apparent when you're invoking the pipeline synchronously, but when
we discuss asynchronous execution later in the chapter, you can see the difference. For now, to use the
Input property to pass objects to the pipeline, simply use the Input.Write () method before the pipeline
is invoked:

Pipeline pipeline = runspace.CreatePipeline("$input | sort-object");
pipeline.Input.Write(3);

pipeline.Input.Write(1);

pipeline.Input.Write(2);

pipeline.Invoke() ;

The input pipe is an instance of the Pipelineliriter class. Besides the irite () method you've already
seen, another overload of write enables you to write a collection and expand it. The following example
writes an entire array to the pipe, one element at a time:

Pipeline pipeline = runspace.CreatePipeline("S$input \ sort-object");
int[] numbers = {3, 2, 1};

pipeline.Input.Write (numbers, true);

pipeline.Invoke() ;

The Output Pipe in Synchronous Execution

For synchronously invoked pipelines, all output is collected in the return value of the synchronous
Invoke () method, so after the call to Invoke (), Output.Read() never returns anything. The Read ()
methods of the output pipe can be called prior to synchronous invocation as well, but for obvious reasons
this also never returns any results. Later in the chapter, you will learn about asynchronous invocation,
and you will be able to see how objects can be read from the output pipe while the pipeline is executing.

Retrieving Non-Terminating Errors from the Error Pipe

In contrast to the output pipe, during synchronous invocation, the contents of the error pipe are not
aggregated in a collection and must be read using the error pipe’s read methods. Non-terminating errors
are analogous to messages written to the stderr pipe of a console application. PowerShell has expanded
on this concept, and returns non-terminating errors as ErrorRecord objects, which contain details such
as the error message; the exception, if any, that originated the error; and a unique error identifier that can
be used during debugging to identify the exact line of code that wrote the error into the error pipe.

After an asynchronous Invoke (), non-terminating errors are read from the error pipe using the Non-
BlockingRead (), Read (), Peek (), and ReadToEnd () methods. Calling ReadToEnd () will retrieve all of
the available errors in a generic collection, or the EndofPipeline property can be used by a hosting
application for iterating through the errors:

pipeline.Invoke() ;

while (!pipeline.Error.EndOfPipeline)

{
ErrorRecord thisError = pipeline.Error.Read() as ErrorRecord;
if (thisError != null) {...}

173

Chapter 6: Hosting the PowerShell Engine in Applications

The ErrorRecord Type

Errors returned from a pipeline object’s error pipe are packaged as instances of ErrorRecord.
ErrorRecord contains a great deal of information to help developers and end users diagnose failures.
Depending on the needs of your hosting application, you may choose to display only the minimal infor-
mation provided by the ErrorRecord’s ToString () method, you can retrieve detailed information from
the object, as provided by the CategoryProperty class, or you can, in some cases, retrieve information as
specific as the stack trace of the exception that originated the error.

The following example shows a host application that runs the script block "get-childitem hklm:\".
Because the HKEY_LOCAL_MACHINE Registry key contains a subkey called Security, whose default ACL
prevents it from being opened by users, running the script block produces a set of PSobject results
interrupted by one non-terminating error, which is retrieved and displayed to the user:

using System;
using System.Management.Automation;
using System.Management.Automation.Runspaces;

namespace PSBook.Chapter6
{
class Sampled
{
static void Main(string[] args)
{
// Create and open a runspace that uses the default host
Runspace runspace = RunspaceFactory.CreateRunspace () ;
runspace.Open () ;

// Create a pipeline that enumerates hklm:\
Pipeline pipeline = runspace.CreatePipeline("get-childitem hklm:\\");

// Invoke the pipeline
pipeline. Invoke() ;
// Display errors from the error pipe
while (!pipeline.Error.EndOfPipeline)
{
Console.WriteLine("Error: {0}", pipeline.Error.Read());

}

Other Pipeline Tricks

The runspace and pipeline object model puts some limitations on host applications. This section demon-
strates some ways in which you can work around concurrency and reuse issues you might face while
developing your custom host.

Nested Pipelines

One limitation of the PowerShell engine is its inability to execute two pipelines in a runspace concur-
rently. This stems from the lack of thread safety in the runspace instance’s session state. Pipelines running

174

Chapter 6: Hosting the PowerShell Engine in Applications

concurrently in one runspace could easily modify the same variables, drive mappings, and so on, and
conflict with each other. Rather than take on the expense of ensuring thread safety in session state, a
design decision was made to throw an exception when an application attempts to invoke a pipeline
while another is already running in the same runspace.

Note a caveat to this, however: If a pipeline is synchronously invoked from an already running pipeline,
then the existing pipeline is guaranteed to be blocked until the new one is finished executing. This
allows for the new concept of a nested pipeline. The Runspace type provides two overloads of a method
called createNestedPipeline (), which creates a Pipeline object that can be called from the thread of a
pipeline that’s already running.

A practical example of this is the nested prompt functionality of the PowerShell host. When

a cmdlet prompts for user input, it can offer the option of entering a nested prompt. If the user
selects this option, they are dropped into a new command prompt; and when they exit this prompt,
they return to the cmdlet’s prompt. Without the nested pipeline functionality, this behavior would
be impossible.

The overloads of CreateNestedPipeline () are similar to those of Createpipeline (). You can either cre-
ate an empty pipeline and programmatically populate it with commands, or you can specify

a script block and a Boolean history parameter. Once you've created the nested pipeline, if you try

to execute it outside of a running pipeline’s thread, then an exception is thrown. An exception is also
thrown if you attempt to execute the pipeline asynchronously, via the pipeline’s InvokeAsync () method.
In addition, if a pipeline is created using CreateNestedPipeline (), then its IsNested property will
return true.

Reusing Pipelines

Once a pipeline has been invoked, that instance can never be invoked again. However, any
pipeline, regardless of its state, can be duplicated using the pipeline type’s Copy () method. This effec-
tively makes a pipeline reusable, as an endless number of exact copies can be made. The following
example creates a pipeline to check whether a filesystem path exists, and invokes it every 100 milliseconds
until it returns true:

Pipeline pipeline = runspace.CreatePipeline("test-path x:\\");
while (S$Strue)
{

foreach (PSObject thisResult in pipeline.Copy () .Invoke())

if ((bool)thisResult.BaseObject)
return true;

Thread.Sleep(100) ;

}

This allows a pipeline to be constructed, stored, passed around by reference, and finally executed from
another code block that needn’t contain the logic to rebuild the pipeline. For instance, a pipeline could be
created, set aside, and then passed to an event handler for execution.

Copying a Pipeline Between Runspaces

The engine API in PowerShell 1.0 doesn’t have a built-in mechanism for copying a pipeline from one
runspace to another, but an application developer can accomplish this simply by copying the Commands

175

Chapter 6: Hosting the PowerShell Engine in Applications

collection from one pipeline to another one in a different runspace. The following code performs such a
copy operation:

Pipeline oldPipeline = oldRunspace.CreatePipeline();

Pipeline newPipeline = newRunspace.CreatePipeline();
foreach (Command thisCommand in oldPipeline.Commands)

{
newPipeline.Commands.Add (thisCommand) ;

}

Because the state of the Command objects in the Commands collection doesn’t change when the runspace
is invoked, the new pipeline can be invoked in the new runspace as though it were originally
constructed there.

Configuring Your Runspace

Until now, the runspace instances we’ve created have all used the default set of cmdlets, providers,
initialization scripts, and formatting information provided when you call CreateRunspace () with no
arguments. In the previous section, for example, the runspace we created is pre-configured with the
get-childitem cmdlet and the Registry Provider. No additional step is required to make the cmdlet or
provider available to the script block.

When authoring a custom host application, however, the PowerShell engine gives developers control
over the initial configuration of their runspace via the RunspaceConfiguration class, which is passed to
CreateRunspace (). After a runspace has been created, variables in the runspace’s session state can be set
and retrieved using the SessionStateProxy property of the Runspace class.

After you create a runspace instance, the runspace’s configuration is exposed by its RunspaceConfigura-
tion property. While the runspace is in the BeforeOpen state, you can still change the configuration, but
not all changes to RunspaceConfiguration will be reflected in the runspace if the changes are made after
the runspace has been opened. Specifically, calls to AddPSSnapin () and RemovePSSnapin ()are honored
after the runspace is open, but direct changes to the Assemblies, Cmdlets, Formats, Scripts, and Types
collections are not.

Creating a Runspace with a Custom Configuration

To create a runspace instance with a custom configuration, you must first construct a Runspace-
ConfigurationAﬁWeCt'The System.Management .Automation.Runspaces.RunspaceConfiguration class
provides a static method called create (), whose overloads enable you to create a basic configuration,
create a configuration from a snap-in assembly, or create a configuration from a PowerShell

console file.

However you choose to create your RunspaceConfiguration, the resulting object is always pre-loaded
with PowerShell’s cmdlets, providers, and other configuration information. These are exposed as collec-
tion properties on the RunspaceConfiguration class, however, and these collections can be programmat-
ically emptied if need be.

176

Chapter 6: Hosting the PowerShell Engine in Applications

Adding and Removing Snap-Ins

The recommended practice for deploying cmdlets and providers is to package them in PowerShell
snap-ins, which are .NET assemblies containing cmdlet and provider classes. For a complete discussion
of creating custom snap-ins for PowerShell, refer to Chapter 2.

To load a snap-in in a RunspaceConfiguration, use RunspaceConfiguration.Create () with no argu-
ments to create a basic configuration. Then, use the AddPssnapIn () method to add a registered snap-in:

RunspaceConfiguration configuration = RunspaceConfiguration.Create();
PSSnapInException warning = null;
configuration.AddPSSnapIn ("MySnapIn", out warning) ;

The second parameter to AddPSSnapIn () is an out parameter that returns an instance of PSSnapInExcep-
tion if the call partially fails. If the snap-in cannot be found, or some other fatal error occurs, the call to
AddPSSnapin () throws an exception.

Once the snap-in has been loaded into the RunspaceConfiguration, the configuration can be used to cre-
ate a runspace instance as shown in the previous section. Snap-ins loaded in a runspace can be removed
using the RemovePSSnapin () method.

Creating RunspaceConfiguration from a Console File

At creation time, a hosting application can specify a PowerShell console file from which to create a Run-
spaceConfiguration instance. A console file is simply an XML file with the extension .psc1, which
contains a list of registered PowerShell snap-ins to be loaded into the runspace.

To create a RunspaceConfiguration from a console file, call the overload of RunspaceConfigura-
tion.Create () with two parameters. The first parameter is the filename of the console file to load, and
the second is an out parameter of type PSConsoleLoadException, which returns warnings:

PSConsoleLoadException warning = null;
RunspaceConfiguration configuration =
RunspaceConfiguration.Create("c:\\myconsole.pscl", out warning) ;

As with AddPSSnap1In, fatal errors during the call to Create () are thrown as exceptions.

Once the console file has been loaded into the RunspaceConfiguration, the configuration can be used to
create a runspace instance, as described earlier.

Creating RunspaceConfiguration from an Assembly

The RunspaceConfiguration type provides a third constructor whose signature is described in the
PowerShell SDK documentation, but whose function is not. The constructor takes one parameter — a
string containing the strong name of an assembly. This constructor is an artifact of the design churn that
occurred when PowerShell was included in and then removed from the Longhorn (now Windows Vista)
operating system.

177

Chapter 6: Hosting the PowerShell Engine in Applications

Versioning concerns in Windows Vista required a redesign of the way third-party cmdlets were added
to PowerShell, and for a brief period a mechanism was provided for third-party developers to create
a “custom shell,” a separate console host that would be initialized with a set of cmdlets and providers
specified at compile time.

An application called make-shell.exe was developed to generate custom shells, and significant effort
was invested in developing a serialization system by which objects generated by one custom shell could
be converted to XML and reconstituted by another custom shell, resulting in an imperfect, but functional,
means of marshalling objects between unrelated third-party cmdlets.

The custom shell design was eventually sidelined and replaced by PowerShell snap-ins, but the plumbing
for it was never completely removed. Make-shell.exe is still available in the PowerShell SDK, and this
third, enigmatic constructor for RunspaceConfiguration is part of the custom shell design.

Using SessionStateProxy to Set and Retrieve Variables

After a runspace has been created, a hosting application can use the SessionStateProxy property of the
runspace to read and set the variables in the runspace instance’s session state. The sessionStateProxy
property is an instance of System.Management.Automation.Runspaces.SessionStateProxy, which
provides the methods Setvariable () and GetVariable().

The Setvariable () method accepts a variable name as a string and a value as an object, and uses them to
set the value of a variable in SessionState. The variable name is provided in the same form as it appears
on the PowerShell command line, without the leading $ character.

The Getvariable () method accepts a variable name as a string and returns the value of the variable as
an object. If the variable is not defined, the method returns null.

Both sessionStateProxy methods can accept a variable whose name specifies a scope, such as global:x.

The following code illustrates how a hosting application can use SessionStateProxy to pass data to and
from the session state of a runspace:

// Create a Runspace
Runspace runspace = RunspaceFactory.CreateRunspace() ;
runspace.Open/() ;

// Set two variables in session state
runspace.SessionStateProxy.SetVariable ("factorOne", 7);
runspace.SessionStateProxy.SetVariable("factorTwo", 11);

// Run a pipeline to multiply the variables and store the answer in a third
// variable

runspace.CreatePipeline("$answer = $factorOne * $factorTwo").Invoke();

// Retrieve the result
int answer = (int)runspace.SessionStateProxy.GetVariable("answer");

178

Chapter 6: Hosting the PowerShell Engine in Applications

Fine-Tuning RunspaceConfiguration

Typically, custom cmdlets and providers are deployed as members of PowerShell snap-in classes. How-
ever, for applications that need a more granular level of control, the RunspaceConfiguration class
provides several collection properties that enable different configuration elements to be added and
removed ““a la carte.”” The following table lists the collections and the corresponding configuration entry
classes that can be added to them.

Collection Configuration Entry Class Description

Assemblies AssemblyConfigurationEntry ~ Loaded snap-in assemblies

Cmdlets CmdletConfigurationEntry Loaded cmdlets

Formats FormatConfigurationEntry Output formatting files
InitializationScripts ScriptConfigurationEntry Scripts run when the runspace is opened
Scripts ScriptConfigurationEntry Functions to define in the global scope
Providers ProviderConfigurationEntry Loaded providers

Types TypeConfigurationEntry Extended type data files

Each of these properties returns a RunspaceConfigurationEntryCollection object, which contains
methods for adding and removing entries, clearing the collection, and committing changes
to the collection.

Adding a Configuration Collection Entry

Entries can be added to the configuration collections individually or in groups, and they can be added to
the beginning or the end of the list. The four methods for adding entries are as follows:

Append (T)
Append (IEnumerable<T>)

Prepend (T)
Prepend (IEnumerable<T>)

Before you can add an entry to the collection, however, you have to create an instance of it.

Removing a Configuration Collection Entry

Individual entries or ranges of entries can be removed from a configuration collection. The methods for
removing entries are as follows:

Removeltem (int index)
Removeltem(int index, int count)

Indexes or ranges that exceed the bounds of the collection will cause IndexOutOfRangeException to
be thrown.

179

Chapter 6: Hosting the PowerShell Engine in Applications

Clearing a Configuration Collection

The entire contents of a collection can be cleared by calling the Reset () method. This is particularly
useful if you want to create a runspace without the default PowerShell configuration elements loaded.
The following code demonstrates how to create such a runspace:

Runspace runspace = RunspaceFactory.CreateRunspace() ;
runspace.RunspaceConfiguration.Cmdlets.Reset () ;
runspace.RunspaceConfiguration.Scripts.Reset () ;
runspace.RunspaceConfiguration.Providers.Reset () ;
runspace.RunspaceConfiguration.Types.Reset () ;
runspace.Open() ;

Committing Changes to a Configuration Collection

Changes to a configuration collection don’t take effect in the runspace until the Update () method of the
collection is called. This method is called automatically when a snap-in is added or removed, or it can be
called directly by the hosting application.

Adding a Cmdiet

The constructor for a cmdletConfigurationEntry takes three parameters: the name of the cmdlet in
verb-noun form, the .NET type that implements the cmdlet, and the name of the help file associated with
the cmdlet. If there is no help file, the third parameter can be null. The following example shows how to
add a cmdlet entry to the RunspaceConfiguration of a runspace:

runspace.RunspaceConfiguration.Cmdlets.Append (
new CmdletConfigurationEntry ("get-widget",
typeof (GetWidgetCmdlet), null));
runspace.RunspaceConfiguration.Cmdlets.Update () ;

Once the entry object has been created, the help filename and implementing type are exposed in the
HelpFileName and ImplementingType properties of the class.

Adding a Provider

Adding a provider to a RunspaceConfiguration is nearly identical to adding a cmdlet, except that the
ProviderConfigurationEntry type is used. The constructor for ProviderConfigurationEntry takes the
name of the provider, the implementing type, and the name of the help file, which can be nul1.

Adding a Formatting File

Formatting files are described in Chapter 8. Adding a formatting file is similar to adding a cmdlet, except
you use the FormatConfigurationEntry class and you have the choice of two constructors. The first
constructor takes a single string that indicates the filename, and the second constructor takes two strings
for the filename and the name of the entry, which is exposed in a property inherited from its base class:

runspace.RunspaceConfiguration.Formats.Append (

new FormatConfigurationEntry ("c:\\myformats.pslxml");
runspace.RunspaceConfiguration.Cmdlets.Update () ;

180

Chapter 6: Hosting the PowerShell Engine in Applications

Adding a Type File

Adding a type file is identical to adding a format file, except that the corresponding TypeConfiguratio-
nEntry class and Types collection are used instead of FormatConfigurationEntry and Formats.

Adding a Function

Global functions can be defined in a RunspaceConfiguration before it is used to create a runspace. To
define a function, create a ScriptConfigurationEntry by passing the name of the function and the
function’s definition to its constructor, and then add the entry to the Scripts collection of the Runspace-
Configuration:

runspace.RunspaceConfiguration.Scripts.Append (
new ScriptConfigurationEntry("add", "return Sargs[0]+Sargs[l]");
runspace.RunspaceConfiguration.Cmdlets.Update() ;

If a function is added to the RunspaceConfiguration of an opened runspace, it will be ignored. In
addition, once a ScriptConfigurationEntry has been created, its definition can be retrieved from the
Definition property.

Running a Pipeline Asynchronously

As the complexity of your application increases, it may eventually be necessary to be able to run a
pipeline asynchronously while the application’s main thread interacts with the user or with other
resources. The threading capabilities of the NET API already make this possible, even if you continue to
use the synchronous Invoke () method, as you can create a new thread, and then use it to perform all of
the runspace interactions.

However, suppose you're performing a time-consuming operation in the pipeline and it produces a
steady stream of output objects as it executes. In order for the application to be truly interactive, it must
read and render the output objects as they become available from the pipeline’s output pipe. It also needs
to allow the user to cancel the operation while it is being executed. With the synchronous Invoke ()
method, this isn’t possible, as the output objects are accumulated in a collection and returned to the
calling method at the end of the operation.

The Pipeline class provides another invoke method, Invokeasync (), which is the key to asynchronously
executing a pipeline.

Calling InvokeAsync()

The prerequisites for calling InvokeAsync () are identical to those for calling Invoke (). You must first
create a runspace, and then open the runspace and create a pipeline. The Runspace class has an asyn-
chronous counterpart to Open () called Openasync () ; however, the runspace state that results from calling
either of these methods is the same, so you needn’t open your runspace with Openasync () in order to
use InvokeAsync (). The following code will create a pipeline and invoke it asynchronously:

Runspace runspace = RunspaceFactory.CreateRunspace() ;
runspace.Open () ;
Pipeline pipeline = runspace.CreatePipeline(

"gps | foreach {sleep 1; $_1}");
pipeline.InvokeAsync () ;

181

Chapter 6: Hosting the PowerShell Engine in Applications

The script block in this example runs the get-process cmdlet and pauses for one second after each object
it produces.

Closing the Input Pipe

If you compile and execute the preceding example, you'll find a counterintuitive quirk of the API: No
matter how long you leave the pipeline running, no objects will appear in the output pipe. That’s because
after you call Invokeasync (), execution of the pipeline is actually suspended until you close the input
pipe. If you modify the code as follows, the pipeline will execute:

Runspace runspace = RunspaceFactory.CreateRunspace () ;
runspace.Open () ;
Pipeline pipeline = runspace.CreatePipeline

"gps | foreach {sleep 1; $_1}");
pipeline. InvokeAsync () ;
pipeline.Input.Close();

Calling Close () on the input pipe while it’s already closed won’t throw an exception, but you can check
the state of the pipe using the Pipelinewriter class’s IsOpen property.

Reading Output and Error from an Asynchronous Pipeline

At this point, if the script block you're running in the pipeline has some effect other than writing objects,
then you'll be able to see it, but you still haven’t received the output of the pipeline. The next step is to
read objects from the running pipeline’s output and error pipes.

The output and Error properties of the pipeline are instances of the generic PipelineReader<T>
class, which contains methods for detecting when objects are available and for reading the available
objects in several different ways. The following table lists the methods you can use to read objects from

PipelineReader
Method Description
Read() Reads one object and blocks if it isn’t available
Read(count) Reads ““count”” objects and blocks until all are read
ReadToEnd() Reads until the pipe is closed
Peek() Checks whether any objects are available to read
NonBlockingRead() Reads one object and returns immediately if there isn’t one
NonBlockingRead(count) Reads ““count” objects and returns immediately if there aren’t enough

PipelineReader also provides a WaitHandle property, which can be used to wait for output, and an
event, DataReady, which is raised when output is available.

182

Chapter 6: Hosting the PowerShell Engine in Applications

Reading from Multiple Pipes with WaitHandle

If your application can spare a thread, or if it’s implemented in a language (like PowerShell script) that
can’t manage event handling, then you can use the wWaitHandle property of PipelineReader to wait for
data from one or more PipelineReader instances.

The System.Threading.WaitHandle class provides a static method, waitany (), that waits for data on
one or more WaitHandle objects. The following sample invokes a pipeline asynchronously and uses
WaitHandle to read from its output and error pipes in the same thread:

using System;
using System.Collections.ObjectModel;
using System.Management.Automation;
using System.Management.Automation.Runspaces;
using System.Threading;
namespace CustomHostConsoleAppl
{
class Program
{
static void Main(string[] args)
{
// Create a runspace
Runspace runspace = RunspaceFactory.CreateRunspace() ;
runspace.Open() ;
// Create a pipeline
Pipeline pipeline = runspace.CreatePipeline("1..10 | foreach {S$_; write-
error $_; start-sleep 1}");

// Read output and error until the pipeline finishes
pipeline.InvokeAsync () ;
WaitHandle[] handles = new WaitHandle[2];
handles[0] = pipeline.Output.WaitHandle;
handles[1] = pipeline.Error.WaitHandle;
pipeline.Input.Close();
while (pipeline.PipelineStateInfo.State == PipelineState.Running)
{
switch (WaitHandle.WaitAny (handles))
{
case 0:
while (pipeline.Output.Count > 0)
{
Console.WriteLine ("Output: {0}", pipeline.Output.Read());
}
break;
case 1:
while (pipeline.Error.Count > 0)
{
Console.WriteLine("Error: {0}", pipeline.Error.Read());
}
break;

183

Chapter 6: Hosting the PowerShell Engine in Applications

Using this approach avoids the thread synchronization issues the application will face during truly
asynchronous, event-driven operation. For example, if the output of two pipelines is being aggregated
into one collection, then you don’t have to worry about two event threads touching the collection at the
same time. However, the trade-off is that you have to dedicate a thread to reading the output.

Reading from PipelineReader with the DataReady Event

Output from pipelineReader also can be read by subscribing to the PipelineReader’s DataReady event.
To do this, the hosting application should create a delegate, and then add the delegate to the event. The

following example behaves identically to the previous example, except it uses the DataReady event. Note
that the same delegate can subscribe to events from both pipes as long as it has a means of differentiating
between them:

using System;
using System.Collections.ObjectModel;
using System.Management.Automation;
using System.Management.Automation.Runspaces;
using System.Threading;
namespace MultiplePipeReader?2
{
class Program
{
static void Main(string[] args)
{
// Create a runspace
Runspace runspace = RunspaceFactory.CreateRunspace() ;
runspace.Open () ;
// Create a pipeline
Pipeline pipeline = runspace.CreatePipeline("1..10 | foreach {$_; write-
error $_; start-sleep 1}");

// Subscribe to the DataReady events of the pipes
pipeline.Output.DataReady += new EventHandler (HandleDataReady) ;
pipeline.Error.DataReady += new EventHandler (HandleDataReady) ;

// Start the pipeline
pipeline.InvokeAsync () ;

pipeline.Input.Close();

// Do important things in the main thread

do
{
Thread.Sleep(1000) ;
Console.Title = string.Format("Time: {0}", DateTime.Now) ;
} while (pipeline.PipelineStateInfo.State == PipelineState.Running);

}

static void HandleDataReady (object sender, EventArgs e)
{

PipelineReader<PSObject> output = sender as PipelineReader<PSObject>;

184

Chapter 6: Hosting the PowerShell Engine in Applications

if (output != null)
{
while (output.Count > 0)
{
Console.WriteLine ("Output: {0}", output.Read());
}
return;

}

PipelineReader<object> error = sender as PipelineReader<object>;
if (error != null)
{
while (error.Count > 0)
{
Console.WriteLine ("Error: {0}", error.Read());
}

return;

}

The pipeline’s error pipe provides nearly the same interface as the output pipe and can be read in the
same manner; the only difference is the type of the objects returned from the pipe. Output always returns
instances of PSObject, whereas error can return any type of object.

Until the event handler returns, pipeline execution is blocked. In addition, when the pipeline completes
and the pipe is closed, a final event is raised, which doesn’t correspond to an object being written to the
pipe. Because of this, the event handler should verify that an object is available from the pipe before
reading it.

Monitoring a Pipeline’s StateChanged Event

In the asynchronous examples presented so far, the pipeline has been executing independently of the
application’s main thread, but the main thread has still been servicing the pipeline while it executes.
For true asynchronous operation, you need to completely divorce the pipeline from the application’s
main thread.

As you've seen, the output and error pipes provide events that are raised when objects are written to the
pipes. The pipeline also provides an event that is raised when pipeline state changes occur. A hosting
application that subscribes to all of these events can process them completely independently of the
main thread.

The pipeline’s stateChanged event is raised immediately after the pipeline’s state changes. The pipeline’s
state can be read from the PipelineStateInfo property, which is an instance of the PipelineStateInfo
type. This type exposes a property called Reason, which contains the exception, if any, that caused the
last state change, and a State property, which is a value of the PipelineState enum. The following table
lists the members of this enum.

185

Chapter 6: Hosting the PowerShell Engine in Applications

PipelineState enum Members Description

NotStarted The pipeline has been instantiated but not invoked

Running The pipeline has been invoked and is still running

Stopping Either Stop () or StopAsync () was called, and the pipeline is
stopping

Stopped The pipeline was programmatically stopped

Completed The pipeline finished without error

Failed A terminating error occurred

When the pipeline is invoked, its state changes to Running. If the pipeline succeeds, the state will
eventually change to Completed; and if a terminating error occurs, it will change to Failed. The
following example illustrates how an application can subscribe to the StateChanged event of

a pipeline:

Pipeline pipeline = runspace.CreatePipeline("dir");
pipeline.StateChanged +=

new EventHandler<PipelineStateEventArgs> (pipeline_StateChanged) ;
pipeline.InvokeAsync () ;

static void pipeline_StateChanged(object sender,
PipelineStateEventArgs e)
{
Pipeline pipeline = sender as Pipeline;
Console.WriteLine("State: {0}", pipeline.PipelineStateInfo.State);
}

In an application where multiple pipelines are in use, a single event handler can register for the
StateChanged event and differentiate between the pipelines using the InstanceId property of the
Pipeline type. This is a long integer that is guaranteed to be unique within the pipeline’s runspace.
In addition, the runspace to which the pipeline belongs can be retrieved from the

Runspace property.

Reading Terminating Errors via PipelineStatelnfo.Reason

When you call the synchronous Invoke () method, terminating errors such as parsing errors, pipeline
state errors, exceptions thrown by cmdlets, and explicit cmdlet calls to the ThrowTerminatingError ()
method are surfaced to the hosting application by an exception thrown during the call. When an appli-
cation calls the pipeline’s InvokeAsync () method, returning terminating errors this way isn’t possible
because they can occur at any point after the call to InvokeaAsync () has returned.

When a terminating error occurs in an asynchronous pipeline, the pipeline’s state is changed to Failed
and the pipeline’s StateChanged event is raised. The Reason property of the PipelineStateInfo object
contains an ErrorRecord with information about the terminating error, which can be retrieved by the
event handler.

186

Chapter 6: Hosting the PowerShell Engine in Applications

The following code shows a StateChanged event handler that retrieves and displays a terminating error
from an asynchronously invoked pipeline:

static void pipeline_StateChanged(object sender,
PipelineStateEventArgs e)
{
Pipeline pipeline = sender as Pipeline;
if (pipeline.PipelineStateInfo.State == PipelineState.Failed)
{

MessageBox . Show (
pipeline.PipelineStateInfo.Reason.ToString(), "Error");

Stopping a Running Pipeline

Occasionally, a hosting application that is running an asynchronous pipeline will need to stop the
pipeline before it completes by itself. To allow for this, Pipeline has methods called Stop()

and Stopasync (). The stop () method blocks until the pipeline finishes stopping, and the StopAsync ()
method initiates a stop, but returns immediately.

When stop () or StopAsync () are called, the pipeline’s state is changed to Stopping and the StateChanged
event is raised. If the pipeline’s thread is in a callout to external code, such as a .NET method, the pipeline
remains in the Stopping state indefinitely, waiting for the call to return. Once the pipeline is successfully
stopped, the state moves to Stopped.

Asynchronous Runspace Operations

The Runspace type exposes asynchronous functionality similar to that of the Pipeline class. Runspaces
can be opened without blocking, and the Runspace type provides a host application with events to signal
state changes, so the life cycle of a runspace can be managed in an asynchronous manner.

The OpenAsync() Method

At the beginning of this chapter, you were introduced to the open () method of the Runspace class.
You may have wondered why, if every runspace needs to be opened before it can be used, doesn’t
RunspaceFactory simply produce instances of Runspace that are already open? The answer to this is
two-fold.

First, as discussed at the beginning of the chapter, CreateRunspace () actually returns an instance of
the LocalRunspace class, which derives from the Runspace base class. A LocalRunspace instance in the
BeforeOpen state contains all of the information required to set up the runspace, but much of the heavy
lifting involved in loading snap-ins and initializing providers hasn’t been done. Creating a LocalRun-
space in the BeforeOpen state is relatively lightweight in terms of CPU time and memory, compared
to setting it to the Opened state. In the Opened state, the memory footprint of LocalRunspace with the

187

Chapter 6: Hosting the PowerShell Engine in Applications

default host and configuration is larger than the same in the BeforeOpen state by a factor of about 30. By
deferring your call to Open (), you can create runspaces containing a full set of configuration information,
but avoid allocating resources until you're ready to use them.

In future versions of PowerShell, another derivation of Runspace might contain information for connec-
tion to a remote computer or process in the BeforeOpen state, for example, but not actually establish the
connection until it moves to the Opened state.

The second reason for not returning opened runspaces from RunspaceFactory is to support the
openAsync () method, which allows a hosting application’s main thread to open a runspace with a
non-blocking call and monitor the progress of the call and any errors via the runspace’s
StateChanged event.

Handling the Runspace’s StateChanged Event

Like the pipeline’s StateChanged event, the runspace’s StateChanged event is raised immediately after
the state of the runspace changes. An event handler that subscribes to the event can retrieve the new state
of the runspace from the runspace’s RunspaceStateInfo property.

The RunspaceStateInfo property is an instance of the RunspaceStateInfo class. RunspaceStateInfo
provides the current state of the runspace via its State property, which is of type RunspaceState, as
well as an exception in the Reason property. Constructors for RunspaceStateInfo will most likely not
be used by application developers, but variants allow creation from an existing RunspaceStateInfo, a
RunspaceState, Or a RunspaceState and an Exception. RunspaceStateInfo also implements
ICloneable, so an instance of it can be duplicated using the Clone () method.

The following list shows the possible states of a Runspace instance, which are defined in the
RunspaceState enum:

0 BeforeOpen: The runspace has been instantiated but not opened.

QO Broken: An error has occurred and the runspace is no longer functional. In this case, the Reason
property of RunspaceStateInfo will be populated.

O Closed: The runspace has been explicitly closed by the application.

O Closing: The CloseaAsync () method has been called and the runspace is in the process
of closing.

0 Opened: The runspace is opened and ready to execute commands.

0 Opening: The Openasync () method has been called and the runspace is opening, but it is not yet
ready to execute commands.

An intermediate state, Opening, occurs after the call to Open () or OpenAsync () but before the run-
space ultimately reaches the Opened state. Attempting to invoke a pipeline while the runspace is in the
Opening state will result in an error, so a hosting application must verify that the state has reached
Opened before invoking a pipeline.

Each instance of Runspace is assigned a GUID, which is exposed in the runspace’s InstanceId property.

If a Runspace. StateChanged event handler subscribes to events from multiple Runspace objects, this
property can be used to differentiate between them.

188

Chapter 6: Hosting the PowerShell Engine in Applications

Constructing Pipelines Programmatically

The logic provided in the PowerShell engine should be treated as the authoritative “expert” on Pow-
erShell language syntax. Hosting applications should not attempt to replicate this logic outside of the
engine; and by extension, hosting applications should never do the work of translating programmatic
data to or from PowerShell script.

For example, imagine a .NET application with a WinForms GUI that takes a string via a text box control
and passes it as a parameter to a cmdlet invoked in a runspace. A quick-and-dirty way to do this would
be to use String.Format ()to embed the string in a script block, and then execute the script block, as
shown here:

// *** Never Use This Example ***
// String scriptBlock = String.Format ("dir {0}", pathTextBox.Text) ;
// Pipeline pipeline = runspace.CreatePipeline (scriptBlock);

This works well with a simple input case like ““c:\,” but problems arise when the user enters any special
characters, such as quotation marks, semicolons, and so on. The wrong sequence of characters can result
in anything from a parsing error to unintended execution of a command. The problem becomes much
worse if the string comes from an untrusted source, such as a Web page form, as a malicious user could
use this to execute arbitrary commands.

Because of this, the PowerShell engine API provides two ways of constructing a pipeline. The first, which
you've already used extensively, is to convert a script block directly into a pipeline and execute it. This
method is appropriate if you're using a constant string as the script block, or the string comes from the
user in whole form, such as in a command-line shell.

The second method is to programmatically build a pipeline from instances of Command and Parameter
objects. Using this method, user input can be received as fully qualified .NET objects and then passed to
commands without an intermediate translation into and out of PowerShell script.

Creating an Empty Pipeline

The first step in programmatically building a pipeline is to create an empty instance of the Pipeline
class. To do this, call the overload of the CreatePipeline () method that takes no parameters:

Pipeline pipeline = runspace.CreatePipeline();

At this point, if you try to invoke the pipeline, either through Invoke ()or InvokeaAsync (), a MethodIn-
vocationException is thrown. The pipeline must contain at least one command before it can be invoked.

Creating a Command

The system.Management . Automation.Runspaces.Command class is instantiated with new in C#, and pro-
vides three constructors. The first constructor takes a single string parameter, which is analogous to the
command token at the beginning of a PowerShell command. The string can be a cmdlet name, the path to
a document or executable, an alias, or a function name, and it undergoes the same command discovery
sequence that it would if it were being processed in a script block:

Command command = new Command("get-childitem");

189

Chapter 6: Hosting the PowerShell Engine in Applications

Command discovery does not occur until the pipeline is invoked, however, so the hosting application
doesn’t need to catch exceptions while creating the Command instance.

The other two constructors of Command take one and two Boolean parameters, respectively, which indicate
that the command is a script, and whether to run the command in the local scope. The SDK documenta-
tion touches on this subject rather lightly, so it is expanded on here.

The second and third command constructors, like CreatePipeline (), can accept a full script block when
they are constructed. In the following example, the first line will successfully create a command from
a script block. The second line will create a Command instance, but CommandNotFoundException will be
thrown when the pipeline is invoked because PowerShell will attempt to resolve the entire string as a
command name:

Command commandl = new Command ("get-childitem c:\\", true);
Command command2 = new Command("get-childitem c:\\", false);

The third constructor takes an additional Boolean parameter, which indicates whether the command
will be run in the local scope. This is analogous to ““dot-sourcing” a script on

the command line. If true is passed to this third parameter, session state changes, such as setting vari-
ables, mapping drives, and defining functions, will occur in a temporary local scope and will be lost
when the pipeline finishes executing. By default, session state changes are applied to the global scope.
The following code illustrates how to create a command whose session state effects only apply to the
local scope:

Command command = new Command ("$myLocalVariable = 1", true, true);

Once a command has been created, its text, parameters, whether it is a script, and whether the script
should use the local or global scope are exposed in the Command object’s CommandText, Parameters, IsS-
cript, and UseLocalScope properties, respectively.

Merging Command Results

When you construct a pipeline, by default the output of each command goes to the next command’s input
stream, and the error output of all commands is aggregated in the pipeline’s error stream. The Command
type provides a mechanism by which a command can accept the previous command’s error output as
input. To do this, set the command’s MergeUnclaimedPreviousCommandResults property before invoking
the pipeline, as shown here:

Command commandOne = new Command ("dir");

Command commandTwo = new Command ("out-file MyLog.txt");

commandTwo .MergeUnclaimedPreviousPropertyResults =
PipelineResultTypes.Error | PipelineResultTypes.Output;

When these commands are added to a pipeline and invoked, the error and output streams of the first
command are merged as input for the second command. The property is an instance of the PipelineRe-
sultTypes enum. The enum contains values None, Error, and output, but in PowerShell version 1, an
error will occur if you specify anything other than one of the following:

a PipelineResultTypes.None

a (PipelineResultTypes.Error | PipelineResultTypes.Output)

190

Chapter 6: Hosting the PowerShell Engine in Applications

Another mechanism is provided for doing the same from the perspective of the first command in the
pipeline. By calling the first command’s MergeMyResults method, you can merge the first command’s
error output into the input of the second command, as shown here:

Command commandOne = new Command ("dir");

commandOne .MergeMyResults (PipelineResultTypes.Error,
PipelineResultTypes.Output) ;

Command commandTwo = new Command ("out-file MyLog.txt");

Again, the only supported values in PowerShell 1.0 are to merge or not merge the error output of one
command into the input of the other. When using either of these approaches, the effects can be reversed
by passing PipelineResultTypes.None as the target value:

commandOne .MergeMyResults (PipelineResultTypes.Error,
PipelineResultTypes.None) ;

commandTwo .MergeUnclaimedPreviousPropertyResults =
PipelineResultTypes.None;

Adding Command Parameters

Parameters are passed to an instance of a Command as a collection of CommandParameter objects stored
in the Parameters property of the Command. Commands created from command tokens and from script
blocks both expose a Parameters collection, although parameters added to a Command created from a
script block will be ignored.

The Parameters collection contains an Add () method that enables you to add parameters, either by
directly specifying their names and values, or by constructing them as instances of Commandparameter,
and then passing the CommandParameter instances to Add (). When calling 2dd () with the name of a
parameter, you can pass just the name for Boolean parameters, or the name and an object. If an object
is passed to a parameter but it is of a type that is incompatible with the parameter’s definition of the
command, then a ParameterBindingException will be thrown when the pipeline is invoked.

The following sample illustrates how a hosting application adds the "recurse" and "path" parameters
to the "get-childitem" command. The "recurse" parameter is Boolean:

Command command = new Command ("get-childitem") ;
command.Parameters.Add ("recurse") ;
command.Parameters.Add ("path", textPath.Text");

CommandParameter provides two constructors. The first takes a single string and produces a Command-
Parameter that represents a Boolean parameter. The second takes a string and an object, and can be
used to pass an argument of any type to the command. The following example shows how to create the
CommandParameter objects independently and then pass them to the Add () method:

Command command = new Command("get-childitem");

CommandParameter recurse = new CommandParameter ("recurse");
CommandParameter path = new CommandParameter ("path", textPath.Text");
command.Parameters.Add (recurse) ;

command.Parameters.Add (path) ;

After a CommandParameter has been constructed, its name and value can be retrieved using the Name and
Value properties.

191

Chapter 6: Hosting the PowerShell Engine in Applications

Adding Commands to the Pipeline

Once a command has been created and its parameters have been populated, it can be added to the
pipeline’s Commands collection, which is an instance of CommandCollection. Each subsequent command
added to the collection is appended to the pipeline, so the output of the first command becomes the input
for the second command, and so on, as shown in the following example:

pipeline.Commands.Add (dirCommand) ;
pipeline.Commands.Add (sortCommand) ;

The Commands collection also provides two shorthand ways of adding commands to the pipeline when no
parameters are provided, without the overhead of creating the Command objects. The Add () method of the
Commands collection can take a string, which is interpreted as a command token. Additionally, a separate
method called addscript () is available, which takes a script block. An overload of this method accepts a
flag to specify local or global scope. The following calls add a command, a script block, and a local scope
script block to the pipeline, respectively:

pipeline.Commands.Add("get-childitem") ;
pipeline.Commands.AddScript("$a = 1");
pipeline.Commands.AddScript("$a = 1", true);

This next code sample is a complete host application, which executes a programmatically constructed
pipeline:

using System;

using System.Collections.ObjectModel;

using System.Management.Automation;

using System.Management.Automation.Runspaces;

namespace MonadSamples?2
{
class Program
{
static void Main(string[] args)
{
// Create and open a runspace
Runspace runspace = RunspaceFactory.CreateRunspace () ;
runspace.Open () ;

// Create an empty pipeline
Pipeline pipeline = runspace.CreatePipeline();

// Create a get-childitem command and add the

// 'path' and 'recurse' parameters

Command dirCommand = new Command ("get-childitem") ;

dirCommand.Parameters.Add("path",
"hklm:\\software\\microsoft\\PowerShell") ;

dirCommand.Parameters.Add("recurse") ;

// Add the command to the pipeline
pipeline.Commands.Add (dirCommand) ;

// Append a sort-object command using the shorthand method
pipeline.Commands.Add("sort-object") ;

192

Chapter 6: Hosting the PowerShell Engine in Applications

// Invoke the command
Collection<PSObject> results = pipeline.Invoke();
foreach (PSObject thisResult in results)
{
Console.WriteLine (thisResult.ToString());
}

Cmdlets as an API Layer for GUI Applications

One of the driving reasons that led to the development of Windows PowerShell was the lack

of parity between the GUI experience in Windows and the command-line experience. Systems
administrators lamented to Microsoft that whereas they could do nearly anything in the GUI, they
could do almost nothing in the default command line. This wasn’t just an inconvenience for veteran
command-line users — it meant that without investing in a high-level language, it was impossible to
automate most administrative tasks.

To close this gap, and achieve one-to-one parity between the GUI experience and the command-line
experience, several Microsoft products are moving to a model whereby PowerShell cmdlets serve as

an underlying API, on top of which the GUI is built. A notable example of this is the latest version of
Microsoft Exchange, which shipped with several hundred custom cmdlets and an MMC-based GUI layer
built on top of them.

This section of the chapter discusses the techniques (and challenges) of building such a
GUI layer.

High-Level Architecture

If you’ve read this far in the chapter, you already know everything you need to know in order to imple-
ment a basic integration of a GUI application with the PowerShell engine API. The following example
shows a GUI application that accepts a button click, calls the get-date cmdlet using a RunspaceInvoke
object, and displays it in a WinForms message box:

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Collections.ObjectModel;
using System.Management.Automation;

namespace AbsoluteBasicGuiAppl
{
public partial class GetDateForm : Form
{
public GetDateForm()

193

Chapter 6: Hosting the PowerShell Engine in Applications

{
InitializeComponent () ;

}

private void buttonl_Click(object sender, EventArgs e)
{
foreach (PSObject thisDate in new RunspaceInvoke().Invoke ("get-date"))
{
MessageBox.Show (thisDate.ToString (), "Today's Date");
}

}

Although this example runs, it lacks several design considerations that prevent it from scaling into a
useful application when more functionality is added.

Keys to Successful GUI Integration

PowerShell provides a rich public interface that exposes the execution environment to the hosting appli-
cation in several flexible ways. The drawback to this is that when you're building a GUI application on

top of this interface, it’s easy to over-integrate and end up with a host implementation that’s difficult to

debug and maintain. Here are some points to keep in mind when creating your initial design.

Isolate Your Business Logic

The key to achieving parity between your GUI and command line is to isolate your business logic at or
below the cmdlet level. If business logic is implemented above the cmdlet layer, it will be inaccessible
from the command line.

Prepare to Decouple the Engine

By the time you finish developing a clean GUI layer for your application, you will have invested a sig-
nificant amount of effort in it, and you should plan to preserve that investment if you decide that you no
longer want to use PowerShell cmdlets as your API layer. The more PowerShell-specific code you have in
the GUI layer, the more work it will take to decouple it from the engine. Therefore, you should abstract
out as much of the PowerShell-specific work as you can into its own set of classes, and then call these
from your GUL

Don’t Waste Resources

In the example from the last section, every time the ““get-date” button is clicked, an entire runspace and
pipeline are created, initialized, and thrown away. This is inefficient in terms of both memory and time.
You should create your Runspace and Pipeline objects up front, and do as little work as possible when
it comes time to execute a command.

Providing a Custom Host

If you're developing a GUI application to host the PowerShell engine, you have the option to provide a
custom implementation of PowerShell’s host interfaces, which will allow cmdlets and scripts to interact
directly with your GUL Implementing a custom host is described in detail in Chapter 7.

194

Chapter 6: Hosting the PowerShell Engine in Applications

Once you've implemented the host interfaces in your application, you can tell the PowerShell engine
to use your host by passing an instance of it to the CreateRunspace () method on RunspaceFactory. In
previous examples, we called CreateRunspace () with a RunspaceConfiguration or with no arguments.
The following example instantiates a custom host, creates a Runspace, and executes a script block that
displays a message on the host:

MyCustomHost customHost = new MyCustomHost () ;

Runspace runspace = RunspaceFactory.CreateRunspace (customHost) ;
runspace.Open() ;

runspace.CreatePipeline("$host.UI.WriteLine('Hello, Host!')").Invoke();
runspace.Close() ;

Summary

This chapter introduced you to the PowerShell Engine API, and showed you how to incorporate it
into your custom host applications. You can use the techniques in this chapter to add PowerShell
script-processing functionality to most .NET environments, bringing together the power of .NET and
the versatility of a user-modifiable scripting language.

In the next chapter, you learn about the PowerShell host interfaces in detail. They can be extended to give
the PowerShell engine direct access to your host application’s user interface.

195

Hosts

As you saw in Chapter 6, the Windows PowerShell hosting engine provides access to output,
error, and input streams of a pipeline. The Windows PowerShell engine also provides a way for
cmdlet and script writers to generate other forms of data such as verbose, debug, warning, progress,
and prompts. In this chapter, you will learn how a hosting application can register with the Win-
dows PowerShell engine and get access to these and other forms of data.

An application can host Windows PowerShell using the Pipeline, Runspace, and RunspaceInvoke
API, as shown in Chapter 6. However, to get the other aforementioned data, the hosting appli-
cation has to provide an implementation of System.Management .Automation.Host.PSHost. In
fact, powershell.exe, the Windows PowerShell startup application, implements one such host,
Microsoft.PowerShell.ConsoleHost.

This chapter begins by explaining how the Windows PowerShell engine interacts with a host, and
then describes different built-in cmdlets that interact with a host. It also explores different classes
such as PSHost, PSHostUserInterface, and PSHostRawUserInterface that make up a host.

Host-Windows PowerShell Engine Interaction

A hosting application typically constructs a runspace and uses this runspace to execute a command
line (or script). A runspace is a representation of a Windows PowerShell engine instance and con-
tains information specific to the engine, such as cmdlets, providers and their drives, functions,
variables, aliases, and so forth. When a runspace is loaded, all the built-in cmdlets, providers,
functions, and variables are loaded. The following example demonstrates the different ways to
create a runspace (from the factory class System.Management .Automation.Runspaces.Runspace
Factory):

public static Runspace CreateRunspace();

public static Runspace CreateRunspace (PSHost host);

public static Runspace CreateRunspace (RunspaceConfiguration
runspaceConfiguration) ;

public static Runspace CreateRunspace (PSHost host, RunspaceConfiguration
runspaceConfiguration) ;

Chapter 7: Hosts

Refer to Chapter 6 for more details about Runspace and RunspaceConfiguration. One interesting
thing to notice here is the host parameter passed to the CreateRunspace () factory method. Every
instance of a runspace is associated with a host. The Windows PowerShell engine is capable of gener-
ating forms of data other than just output and errors. For example, a cmdlet or script developer can
generate verbose, debug, warning, and progress data along with output and errors. (You will learn more
about these later in this chapter.) However, a pipeline supports only output and error streams (see Figure
7-1). It is the host that enables the Windows PowerShell engine to support different forms of data other
than output and error. Note that Runspace can be bound to a host only when the runspace is created.
After a runspace is created, it cannot be rebound to a different host.

PSHost

PSHostUserlInterface

PSHostRawUserInterfacee

Input Stream Output Stream
A

Engine

> Cmdiet > Cmdlet | Cmdlet |

Pipeline Pipeline

\
Error Stream

Figure 7-1: How the Windows PowerShell engine interacts with a host
on behalf of a pipeline.

Every pipeline takes input through an input stream, and writes output objects to an output stream, and
error objects to an error stream. Every cmdlet or script in the pipeline has access to a host, and they can
call the host whenever needed, according to certain rules that you'll see later. The instance of the host
that is passed to a runspace is exposed by the runspace to the cmdlets, scripts, and providers that are
executed in that runspace. Scripts access the host instance through the $Host built-in variable. Cmdlets
access the host through the Host property of the PSCmdlet base class. Members of the host instance
can be called by the runspace or any cmdlet or script executed in that runspace, in any order and from
any thread.

It is the responsibility of a host developer to define the host in a thread-safe fashion. An implementation
of the host should not depend on method execution order. It is recommended that you maintain a 1:1
relationship between a host instance and a runspace. Binding the same instance of a host to multiple
runspaces is not supported and might result in unexpected behavior.

PSHost is designed to let the Windows PowerShell engine notify hosting applications whenever a cmdlet/
script enters or exits a nested prompt, whenever a legacy application is launched or ended, and so on.
PSHostUserInterface is designed to be the UI for the Windows PowerShell engine. PSHostRawUser-
Interface is designed to support low-level character-based user interactions for cmdlets and scripts.
At the time of designing these interfaces, the only host the development team considered supporting

198

Chapter 7: Hosts

is a console-based host. Hence, PSHostUserInterface and PSHostRawUserInterface classes have mem-
bers such as Write(), WriteLine(), WriteErrorLine (), WriteDebugLine (), and so on. Windows
PowerShell built-in format cmdlets such as format-1list and format-table use these PSHostUserIn-
terface members to display data to the user.

Let’s look at the built-in Windows PowerShell cmdlets that take advantage of the PSHost.

Built-ln Cmdlets That Interact with the Host

A scripter can provide information to a host using the built-in cmdlets Write-Debug, Write-Progress,

Write-Verbose, Write-Warning, Write-Host, Read-Host, and Out-Host. These cmdlets directly call the
host API according to the value of certain engine variables. Apart from these cmdlets, every cmdlet in

Windows PowerShell has access to the ubiquitous parameters -Debug and -Verbose.

The following sections illustrate how these cmdlets interact with the host and how different session
variables such as DebugPreference, VerbosePreference, WarningPreference, and ProgressPreference
control the behavior of these cmdlets.

Write-Debug

The write-Debug cmdlet writes a debug message to the host. The built-in variable DebugPreference
controls the behavior of this cmdlet. DebugPreference can be one of the following values:

Value Description

SilentlyContinue Ignore debug messages.

Stop Write the debug message and stop the pipeline.

Continue Write the debug message and continue.

Inquire Write the debug message and ask the host whether to continue or stop.

Here is an example of how this cmdlet works:

PS D:\psbook> write-debug "This is a debug message"
PS D:\psbook>

By default, DebugPreference is set to SilentlyContinue when the Windows PowerShell engine is cre-
ated; as a result, the write-debug cmdlet does not write the debug message to the host.

PS D:\psbook> $DebugPreference
SilentlyContinue

PS D:\psbook>

A user can control the value of DebugPreference in two ways: by changing the value of the variable or
by calling the cmdlet with the —Debug parameter:

PS D:\psbook> $DebugPreference

199

Chapter 7: Hosts

SilentlyContinue

PS D:\psbook> $DebugPreference = "Continue"

PS D:\psbook> write-debug "This is a debug message"
DEBUG: This is a debug message

PS D:\psbook> $DebugPreference

Continue

PS D:\psbook>

Changes to the value of a variable persist until the variable is changed again or the PowerShell session
is closed. In the preceding example, because we changed the value of DebugPreference, running the
Wirite-Debug cmdlet again will show the debug message.

Every cmdlet in Windows PowerShell has access to the ubiquitous parameter Debug. This is a Switch-
Parameter, i.e., the parameter specifies on or off behavior. If the Debug parameter is set to on, then
the cmdlet behaves as if DebugPreference were set to Inquire and it ignores the actual value of the
DebugPreference variable. The following example shows how this works:

PS D:\psbook> $DebugPreference

SilentlyContinue

PS D:\psbook> Write-Debug "This is a debug message" -Debug
DEBUG: This is a debug message

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is "Y"): y
PS D:\psbook>

In this case, there are two calls to the host (this will be explained in detail later in this chapter). For the
time being assume that the Windows PowerShell engine calls the host for writing the debug message and
for prompting.

Write-Verbose

The write-Verbose cmdlet writes a verbose message to the host. The variable VerbosePreference con-
trols the behavior of this cmdlet. VerbosePreference can be one of the following values:

Value Description

SilentlyContinue Ignore verbose messages.

Stop Write the verbose message and stop the pipeline.

Continue Write the verbose message and continue.

Inquire Write the verbose message and ask the host whether to continue or stop.

Here’s an example showing how this cmdlet works:

PS D:\psbook> Write-Verbose "This is a verbose message"
PS D:\psbook>

200

Chapter 7: Hosts

By default, VerbosePreference is set to SilentlyContinue when the Windows PowerShell engine is
created. As a result, the Write-Verbose cmdlet does not write the verbose message to the host:

PS D:\psbook> $VerbosePreference
SilentlyContinue
PS D:\psbook>

A user can control the value of VerbosePreference in two ways, just like DebugPreference, i.e., by
changing the value of variable or by calling the cmdlet with the —Verbose parameter:

PS D:\psbook> $VerbosePreference

SilentlyContinue

PS D:\psbook> S$VerbosePreference="Continue"

PS D:\psbook> Write-Verbose "This is a verbose message"
VERBOSE: This is a verbose message

PS D:\psbook> $VerbosePreference

Continue

PS D:\psbook>

Changes to the value of a variable persist until the variable is changed again or the PowerShell session
is closed. Because the value of VerbosepPreference is changed in the preceding example, running the
Wirite-Verbose cmdlet again shows the verbose message.

Every cmdlet in Windows PowerShell has access to the ubiquitous parameter Verbose. This is a Switch-
Parameter, i.e., the parameter specifies on or of f behavior. If the Verbose parameter is set to on, then
the cmdlet behaves as if VerbosePreference were set to Continue and ignores the actual value of the
VerbosePreference variable. The following example shows how this works:

PS D:\psbook> $VerbosePreference

SilentlyContinue

PS D:\psbook> Write-Verbose "This is a verbose message" -Verbose
VERBOSE: This is a verbose message

PS D:\psbook>

The ubiquitous parameter —Debug has an effect on this preference. If -Debug is on and the —verbose
parameter is not used, the cmdlet behaves as if VerbosePreference were set to Inquire. Let’s see this
in action:

PS D:\psbook> $VerbosePreference

SilentlyContinue

PS D:\psbook> Write-Verbose "This is a verbose message"

PS D:\psbook> Write-Verbose "This is a verbose message" -Debug
VERBOSE: This is a verbose message

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is "Y"): y
PS D:\psbook>

Notice how the use of the —Debug parameter changed the behavior of the write-verbose cmdlet.
Even though VerbosePreference is set to SilentlyContinue, the Write-Verbose cmdlet behaves as if
VerbosePreference were set to Inquire. This is because the default behavior of —Debug is

to Inquire.

201

Chapter 7: Hosts

Write-Warning

The write-Warning cmdlet writes a warning message to the host. The variable WarningPreference
controls the behavior of this cmdlet. WarningPreference can be one of the following values:

Value Description

SilentlyContinue Ignore warning messages.

Stop Write the warning message and stop the pipeline.

Continue Write the warning message and continue.

Inquire Write the warning message and ask the host whether to continue or stop.

Here’s an example of how this works:

PS D:\psbook> Write-Warning "This is a warning message"
WARNING: This is a warning message
PS D:\psbook>

By default, warningPreference is set to Continue when the Windows PowerShell engine is created. As
a result, the write-warning cmdlet writes the warning message to the host:

PS D:\psbook> $WarningPreference
Continue
PS D:\psbook>

WarningPreference is different from DebugPreference and VerbosePreference in that individual
cmdlets cannot control this preference using a ubiquitous parameter. However, the ubiquitous
parameters —Debug and —Verbose do have an effect on this preference. If the -Debug parameter is

on, the WarningPreference behaves as if its value were set to Inquire. If the —Verbose parameter is on,
the WarningPreference behaves as if its value were set to Continue. The following example illustrates
how this works:

PS D:\psbook> $WarningPreference

Continue

PS D:\psbook> write-warning "This is a warning message" -Debug
WARNING: This is a warning message

Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is "Y"): y

PS D:\psbook> $WarningPreference="Stop"

PS D:\psbook> $WarningPreference

Stop

PS D:\psbook> write-warning "This is a warning message" -Verbose
WARNING: This is a warning message

PS D:\psbook>

Notice how the use of —Debug and —Verbose control the behavior of the Write-Warning cmdlet.

202

Chapter 7: Hosts

Write-Progress

The wWrite-Progress cmdlet writes a progress message to the host. The variable Progresspreference
controls the behavior of this cmdlet. Progresspreference can be one of the following values:

Value Description

SilentlyContinue Ignore progress messages.

Stop Write the progress message and stop the pipeline.

Continue Write the progress message and continue.

Inquire Write the progress message and ask the host whether to continue or stop.

Here’s an example of how this works:

PS D:\psbook> for($i=0;$i -1t 100;$i++) { write-progress "Writing Progress" "%
Complete:" -perc $i}
PS D:\psbook>

By default, ProgresspPreference is set to Continue when the Windows PowerShell engine is created. As
a result, the Write-Progress cmdlet writes the progress message to the host (see Figure 7-2).

-1t 1803

Figure 7-2: Because of the nature of the default host provided with
powershell.exe, progress messages appear at the top of the console
window.

This behavior exists only in powershell.exe and is not enforced on every custom host. A custom host
developer can choose to display progress in any format according to the application’s requirements.

Write-Host and Out-Host

The write-Host and Out-Host cmdlets call the host APl write () and writeLine (), which you will learn
about later in this chapter. The write-Host cmdlet provides support for customizing foreground and
background colors of the data that is displayed (see Figure 7-3).

Figure 7-3: The host supplied with powershell.exe changes the console’s
foreground and background colors as specified by the cmdlet.

203

Chapter 7: Hosts

The out-Host cmdlet supports paging. The Windows PowerShell engine handles all the logic required to
page data. The host only needs to implement the Write () and WriteLine () methods.

Read-Host

The Read-Host cmdlet calls the ReadLine () and ReadLineAsSecureString () host API and writes the
read data to the output stream. You will learn more about this API later in the chapter. The host supplied
with powershell . exe reads data from the console window.

The following example shows this cmdlet in action:

PS D:\psbook> read-host | % { write-host $_}
Input to read-host cmdlet

Input to read-host cmdlet

PS D:\psbook>

In the preceding example, the Read-Host cmdlet read the data from the console window and wrote
the data to the output stream. The Foreach-Object cmdlet (%) read this data from its input stream and
supplied the data to the Write-Host cmdlet, which wrote the data back to the console window.

The preceding sections described how different cmdlets interact with the host. Although you looked
at the behavior of session variables such as DebugPreference, VerbosePreference, WarningPrefer-
ence, and ProgressPreference in the context of Write-Debug, Write-Verbose, Write-Warning, and
Wirite-Progress, these preference variables come into play for any cmdlets that call the base cmdlet
methods WriteDebug (), WriteVerbose (), WriteWarning (), and WriteProgress (), respectively. The
same is true with the ubiquitous parameters —Debug and —Verbose. These parameters are available to
every cmdlet in Windows PowerShell.

The following sections discuss the interfaces a host provides. All the cmdlets discussed so far will interact
with one or more of these host interfaces.

Cmdlet and Host Interaction

Every cmdlet in Windows PowerShell has access to base Cmdlet methods WriteDebug (), WriteVer-
bose (), WriteWarning (), and WriteProgress (). Calling any of these methods from inside the cmdlet
will call the host API depending on certain variables and state of ubiquitous parameters —Debug and
-Verbose.

WiriteDebug method call is dependent on DebugPreference variable and —Debug ubiquitous parameter
(just like Write-Debug cmdlet). If —Debug is switched on, the WritebDebug method call behaves as if Debug-
Preference is set to Inquire and ignores the actual value of the Debugpreference variable. If —Debug
is switched off, the WriteDebug method call depends on the value of DebugPreference variable. By
default DebugPreference is set to SilentlyContinue. Write-Debug cmdlet is just a wrapper around
WriteDebug method.

WiriteVerbose () method call is dependent on VerbosePreference variable and —Debug, —Verbose
ubiquitous parameters. If -Verbose parameter is on, the Writeverbose () method call behaves as if ver-
bosePreference is set to Continue and ignores the actual value of the VerbosePreference variable. If
-Debug is on and —Verbose parameter is not used, the cmdlet behaves as if VerbosePreference is set

204

Chapter 7: Hosts

to Inquire. By default VerbosePreference is set to SilentlyContinue. Wirite-Verbose cmdlet is just a
wrapper around WriteVerbose () method.

WriteWarning () method call is dependent on WarningPreference variable and —Debug, —Verbose
ubiquitous parameters. If —Debug or —Verbose is switched on, then the WarningPreference variable

is ignored. If —Debug is switched on, the WriteWarning () method call behaves as if WarningPreference
were set to Inquire. If —Verbose is switched on, the WritewWarning () method call behaves as if Warning-
Preference were set to Continue. By default, WarningPreference is set to Continue. The Write-Warning
cmdlet is just a wrapper around the WriteWarning () method.

The writeProgress () method call is dependent on ProgresspPreference variable. By default, Pro-
gressPreference is set to Continue

Here’s a simple cmdlet to understand the WiriteDebug () base Cmdlet method:

// Save this to a file using filename: PSBook-7-WriteDebugSample.cs

using System;
using System.ComponentModel;
using System.Management.Automation;

namespace PSBook.Chapter?7
{
[RunInstaller (true)]
public class PSBookChapter7WriteDebugSnapIn : PSSnapln
{
public PSBookChapter7WriteDebugSnapIn ()
: base ()
{
}
// Name for the PowerShell snap-in.
public override string Name
{
get
{
return "Wiley.PSProfessional.Chapter7.WriteDebug";

}
// Vendor information for the PowerShell snap-in.
public override string Vendor
{
get
{

return "Wiley";

}
// Description of the PowerShell snap-in
public override string Description
{
get
{

return "This is a sample PowerShell snap-in";

205

Chapter 7: Hosts

[Cmdlet (VerbsCommunications.Write, "DebugSample")]
public sealed class WriteDebugSampleCommand : Cmdlet
{
[Parameter (Position = 0, Mandatory = true, ValueFromPipeline = true)]
[AllowEmptyString]
public string Message
{
get { return message;}
set { message = value;}
}
private string message = null;
protected override void ProcessRecord()
{

base.WriteDebug (Message) ;

The preceding code sample creates a Write-DebugSample cmdlet by deriving from the System.Manage-
ment.Automation.Cmdlet class. This cmdlet accepts a string message as a parameter value and writes
the message to the Debug interfaces of the host using the writeDebug () method. Because this is a custom
cmdlet, I created a PSBookChapter7iriteDebugSnapIn class to register and load the cmdlet in a Windows
PowerShell session (refer to Chapter 2 for more details about Windows PowerShell snap-ins). Compile
the preceding file and install the snap-in dll that’s generated.

PS D:\psbook> & Senv:windir\Microsoft.NET\Framework\v2.0.50727\csc.exe
/target:library /r:System.Management.Automation.d

11 D:\psbook\Chapter7_WriteDebug\psbook-7-WriteDebugSample.cs
Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.42

for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

PS D:\psbook> & Senv:windir\Microsoft.NET\Framework\v2.0.50727\installutil.exe
PSBook-7-WriteDebugSample.dll

Microsoft (R) .NET Framework Installation utility Version 2.0.50727.832
Copyright (c) Microsoft Corporation. All rights reserved.

Running a transacted installation.

Beginning the Install phase of the installation.
See the contents of the log file for the D:\psbook\PSbook-7-WriteDebugSample.dll
assembly's progress.
The file is located at D:\psbook\PSbook-7-WriteDebugSample.InstalllLog.
Installing assembly 'D:\psbook\PSbook-7-WriteDebugSample.dll'.
Affected parameters are:

logtoconsole =

assemblypath = D:\psbook\PSbook-7-WriteDebugSample.dll

logfile = D:\psbook\PSbook-7-WriteDebugSample.InstalllLog

The Install phase completed successfully, and the Commit phase is beginning.

206

Chapter 7: Hosts

See the contents of the log file for the D:\psbook\PSbook-7-WriteDebugSample.dll
assembly's progress.
The file is located at D:\psbook\PSbook-7-WriteDebugSample.InstallLog.
Committing assembly 'D:\psbook\PSbook-7-WriteDebugSample.dll".
Affected parameters are:

logtoconsole =

assemblypath = D:\psbook\PSbook-7-WriteDebugSample.dll

logfile = D:\psbook\PSbook-7-WriteDebugSample.InstallLog

The Commit phase completed successfully.

The transacted install has completed.

The preceding steps installed our PSBookChapter7WriteDebugSnapIn snap-in on the system. Now we
should add this snap-in to a Windows PowerShell session to see how it works. Let’s add the snap-in to a
PowerShell.exe session and run the cmdlet. Notice how the session variable DebugPreference controls
the behavior of our Write-DebugSample cmdlet:

PS D:\psbook> asnp Wiley.PSProfessional.Chapter7.WriteDebug

PS D:\psbook> Write-DebugSample "This a message from debug sample cmdlet"

PS D:\psbook> $DebugPreference

SilentlyContinue

PS D:\psbook> $DebugPreference = "Continue"

PS D:\psbook> Write-DebugSample "This a message from debug sample cmdlet"

DEBUG: This a message from debug sample cmdlet

PS D:\psbook> $DebugPreference = "SilentlyContinue"

PS D:\psbook> Write-DebugSample "This a message from debug sample cmdlet" -Debug
DEBUG: This a message from debug sample cmdlet

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is "Y"): Y
PS D:\psbook>

As shown in the preceding example, the Wirite-DebugSample cmdlet behaves exactly like the Wirite-Debug
cmdlet. All we did is call the base.WriteDebug () method from inside the ProcessRecord () of our cmdlet.
The writeDebug () method call takes care of querying the DebugPreference variable and the —Debug
SwitchParameter of the cmdlet, and takes care of invoking the host API depending on the rules described
earlier.

WriteDebug (), WriteVerbose (), WriteWarning (), and WriteProgress () result in a host call, whereas
WriteObject () and writeError () write to the output and error streams, respectively. Therefore, a host-
ing application might receive debug, verbose, warning, and progress messages before it actually receives
the output and error data.

PSHost Class

The Windows PowerShell engine generates different kinds of data other than just output and errors,
as shown until now. However, a pipeline supports only input, output, and error. If a hosting appli-
cation needs more information from the executing pipeline, the hosting application must supply an
implementation of the PsHost interface to the runspace at the time the runspace is created. The purpose
of this class is to enable the hosting application to register for different notifications that the Windows

207

Chapter 7: Hosts

PowerShell engine raises while executing a command (in the runspace). The PSHost abstract base class
is defined in System.Management.Automation.dll under the System.Management.Automation.Host
namespace. The abstract PSHost base class looks like the following;:

namespace System.Management.Automation.Host

{
public abstract class PSHost

{
protected PSHost () ;
public abstract CultureInfo CurrentCulture { get; }
public abstract CultureInfo CurrentUICulture { get; }
public abstract Guid InstanceId { get; }
public abstract string Name { get; }
public virtual PSObject PrivateData { get; }
public abstract PSHostUserInterface UI { get; }
public abstract Version Version { get; }
public abstract void EnterNestedPrompt () ;
public abstract void ExitNestedPrompt () ;
public abstract void NotifyBeginApplication();
public abstract void NotifyEndApplication();
public abstract void SetShouldExit (int exitCode) ;

The hosting application must derive from this class and pass an instance of the derived class to the
RunspaceFactory.CreateRunspace () method to bind Runspace to the host. Windows PowerShell engine
can call any of the methods defined in the host after the host is bound to the Runspace. Windows Pow-
erShell engine uses this host instance to notify any non-fatal errors that may occur while opening the
Runspace through Runspace.Open () method. Runspace.Open () is not executed in the context of a
pipeline, so it is not possible to notify non-fatal errors that may occur opening the Runspace without

a host instance. Once a host instance is bound to a Runspace, the instance must not be destroyed until the
Runspace is closed. The Host instance attached to the Runspace is not directly available to Cmdlets and
Scripts as Windows PowerShell engine internally wraps the supplied host. Windows PowerShell engine
exposes this wrapped host to scripts through $Host built-in variable and to cmdlets through the Host
property of the pScmdlet base class. Windows PowerShell engine will not provide the Runspace ID or
the pipeline ID for which the host method is called. Hence the host developer should make sure only 1
Runspace is bound to the host. A Runspace can execute only 1 pipeline. This way the host method call
can be traced back to the Runspace and Pipeline.

The following sections describe each member in the PSHost class, how Windows PowerShell engine
interacts with these members and guidelines to developer implementing these members.

Instanceld

The InstanceId property uniquely identifies an instance of a host. This property is defined as follows:

public abstract Guid InstanceId { get; }

The value of this property should remain invariant for the lifetime of the instance. Typically, this field is
initialized during the construction time of the host instance in the constructor. It is recommended that
you use System.Guid.NewGuid () to create a unique GUID for each host instance. Such an identifier has a
very low probability of being duplicated.

208

Chapter 7: Hosts

The Windows PowerShell engine uses this identifier while logging data to event logs. Thus, each event
log entry can be uniquely identified and correlated to a particular host instance. A simple test shows this:

PS D:\psbook> $host.InstanceId.ToString()
9194b492-c96a-4972-9bc0-19d8a13a3076
PS D:\psbook> get-eventlog "Windows PowerShell" -newest 1 | select message | fl

Message

Name

Engine state is changed from None to Available.

Details:

NewEngineState=Available
PreviousEngineState=None

SequenceNumber=38

HostName=ConsoleHost

HostVersion=1.0.0.0
HostId=9194b492-c96a-4972-9bc0-19d8al3a3076
EngineVersion=1.0.0.0
RunspaceId=87eea710-e959-460c-889a-5502blcd7cc2
PipelineId=

CommandName=

CommandType=

ScriptName=

CommandPath=

CommandLine=

The Name property identifies a host instance in some user-friendly fashion. This property is defined

as follows:

public abstract string Name { get; }

This property can be referenced by scripts and cmdlets to identify the host that is executing them. The
format of the value is not defined, but a short simple string is recommended. For the default console host
shipped by Microsoft, this is set to ““ConsoleHost”.

The Windows PowerShell engine uses this identifier while logging data to event logs. A simple test

shows this:

PS D:\psbook> $host.Name.ToString()

ConsoleHost

PS D:\psbook> get-eventlog "Windows PowerShell" -newest 1 | select message | f1

Message

Engine state is changed from None to Available.

Details:

NewEngineState=Available
PreviousEngineState=None

SequenceNumber=38

209

Chapter 7: Hosts

HostName=ConsoleHost

HostVersion=1.0.0.0
HostId=9194b492-c96a-4972-9bc0-19d8a13a3076
EngineVersion=1.0.0.0
RunspaceId=87eea710-e959-460c-889a-5502blcd7cc2

Version

The Version property identifies the version of the host. This property is defined as follows:

public abstract Version Version { get; }

The value of this property should remain invariant for a particular build of the host. If you plan to
develop multiple versions of the host, use this member to distinguish each version. It is generally not

a good practice to create a dependency on this host member in a script or cmdlet. Scripts and cmdlets
should be developed independently of the host. This way, they can be run in any application hosting the
Windows PowerShell engine. The Windows PowerShell engine uses this property while logging data to
event logs.

CurrentCulture

The CurrentCulture property represents the host’s culture. This property is defined as follows:

public abstract CultureInfo CurrentCulture { get; }

The runspace uses this to set the execution thread’s CurrentCulture property each time it starts a
pipeline. Cmdlets and scripts execute in the context of the pipeline thread, so this value affects the cmdlet
and script execution and their results.

Culture, which is indicated by the Thread.CurrentCulture property, corresponds to the Regional
and Language Options in the Control Panel by default. CurrentCulture affects how numbers,
dates, and times are formatted. This is also what determines which sorting and casing rules to use.

CurrentUICulture

The CurrentUICulture property represents the host’s Urculture. This property is defined as follows:

public abstract CultureInfo CurrentUICulture { get; }

The runspace uses this to set the execution thread’s CurrentUICulture property each time it starts a
pipeline. Cmdlets and scripts execute in the context of the pipeline thread, so this value affects the cmdlet
and script execution and their results.

UICulture, which is indicated by the Thread.CurrentUICulture property, corresponds to the language

of the operating system by default, or the selected language on a multi-language version of Windows.
This affects which resources are loaded, thus determining which strings and pictures the user sees.

210

Chapter 7: Hosts

PrivateData

The PrivateData property is used to enable the host to pass private data through a runspace to cmdlets
or scripts running inside that runspace. This property is defined as follows:

public virtual PSObject PrivateData { get; }

The type and nature of this private data is entirely defined by the host. Notice that PrivateData is a
read-only property. Hence, scripts or cmdlets cannot modify it. The value of this property is totally
controlled by the host. It’s up to the host to ensure the thread safety and state of the object. If the Imme-
diateBaseObject (of this property’s returned instance) is a reference type, then scripts or cmdlets can
modify the object’s members. Therefore, it is recommended that the returned instance of this property
has value semantics, i.e., changes to the state of the returned instance will not be visible across multiple
cmdlets or scripts.

Runspace supports a session state. Session state has a global variable store that is visible to every cmdlet
and script executing in that runspace. A host developer can choose to pass private data to scripts or
cmdlets using the runspace’s session state. Note that a variable in a runspace’s session state can be
removed or modified by scripts or cmdlets unless it is a Constant variable. If a variable is created as

a Constant, then it cannot be modified or deleted by the owner either (assuming the variable has value
semantics).

In general, scripts and cmdlets should not depend on this host property, as they will not be compatible
with other applications hosting the Windows PowerShell engine. Consider passing the private data

as an input or as a parameter to the script or cmdlet instead of depending on the host’s PrivateData
property or the runspace’s session state. This way, the script or cmdlet user does not need to depend on
the environment in which the script or cmdlet executes.

EnterNestedPrompt

The EnterNestedPrompt () method is called by the Windows PowerShell engine to instruct the host
to interrupt the currently running pipeline and start a new nested pipeline using the currently running
pipeline’s runspace. This method is defined as follows:

public abstract void EnterNestedPrompt () ;

This method is called by the Windows PowerShell engine in response to some user action that suspends
the currently running pipeline, such as choosing the Suspend option of a Confirm() call, as shown in the
following example:

PS D:\psbook> get-process powershell | stop-process -confirm
Confirm
Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "powershell (320)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

211

Chapter 7: Hosts

Notice the [S] Suspend option displayed in the preceding code. The Windows PowerShell engine calls
the EnterNestedPrompt () method if user chooses this option. The Windows PowerShell ConsoleHost
uses this method call to create a nested pipeline and execute a new command. This is a useful feature,
as it allows the user to monitor system state like environment variables, session state variables, and so
on before deciding whether to really go ahead with the operation. The currently running pipeline is
suspended until the EnterNestedPrompt () method returns. In fact, EnterNestedPrompt () is called from
the currently running pipeline thread.

A runspace can allow at most one pipeline at any given time. This is because the Windows PowerShell
engine’s session state and other subsystems can allow only one thread to use them. Because the pipeline
is suspended when the EnterNestedPrompt () method is called, the Windows PowerShell engine allows
a specialized nested pipeline to use a different engine’s subsystems. As a result, a host developer can
only invoke nested pipelines in the EnterNestedPrompt () method. A nested pipeline is created using
the runspace’s CreateNestedPipeline () method, as discussed in Chapter 6. Only Invoke () method is
allowed on a nested pipeline.

Typically, a host runs in a User Input- > Create Nested Pipeline- > Invoke loop inside the EnterNest-
edPrompt () method. The Windows PowerShell engine informs the host to exit from this loop by calling
the ExitNestedPrompt () method.

The EnterNestedPrompt () method is called in response to a prompt and some user action. Prompting
requires the host to support the UL Hence, if the UT property of the host is null, then the EnterNested-
prompt () method will never be called. Before calling the EnterNestedPrompt () method, the Windows
PowerShell engine will do the following;:

0 Increment the NestedPromptLevel session state variable

a Set the CurrentlyExecutingCommand session state variable with information about the currently
running cmdlet, such as CommandInfo and StackTrace

These session-state variables are available to the nested pipeline. Let’s look at an example:

PS D:\psbook> $nestedpromptlevel

0

PS D:\psbook> $CurrentlyExecutingCommand

PS D:\psbook> get-process powershell | stop-process -confirm

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "powershell (304)".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
"y"): S

PS D:\psbook>>> $nestedpromptlevel

1

PS D:\psbook>>> $CurrentlyExecutingCommand | £l CommandInfo

CommandInfo : Stop-Process

ExitNestedPrompt

The ExitNestedPrompt () method is called by the Windows PowerShell engine to instruct the host to exit
from a nested prompt. This method is defined as follows:

212

Chapter 7: Hosts

public abstract void ExitNestedPrompt () ;

Typically, a host runs in a User Input- > Create Nested Pipeline- > Invoke loop inside the
EnterNestedPrompt () method. The Windows PowerShell engine informs the host to exit from this loop
by calling the ExitNestedpPrompt () method.

After the host returns from the ExitNestedPrompt () method, the Windows PowerShell engine

resets the NestedPromptLevel and CurrentlyExecutingCommand session state variables and displays
the original prompt that took the host to the nested prompt state. The following code shows an example
of this:

PS D:\psbook> $nestedPromptLevel

0

PS D:\psbook> S$currentlyExecutingCommand

PS D:\psbook> get-process powershell | stop-process -confirm

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "powershell (304)".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
"y"): S

PS D:\psbook>>> exit

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "powershell (304)".

[Y] Yes [A] Yes to All |[N] No [L] No to All [S] Suspend [?] Help (default is
"Y"):n

PS D:\psbook> $nestedPromptLevel

0

PS D:\psbook> S$currentlyExecutingCommand

PS D:\psbook>

Notice that the original prompt is displayed after exit is called from the nested prompt. A session-state
variable LastExitCode is set, which holds the value passed with exit. This variable is set before the
ExitNestedPrompt () method is called.

PS D:\psbook> S$lastexitcode

0

PS D:\psbook> write-debug "This is a debug message" -debug
DEBUG: This is a debug message

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is "Y"):
s

PS D:\psbook>>> exit 5

Confirm
Continue with this operation?
[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is "Y"):

Yy

213

Chapter 7: Hosts

PS D:\psbook> $lastexitcode
5
PS D:\psbook>

Application Notification Methods

NotifyBeginApplication and NotifyEndApplication are used by the Windows PowerShell engine to
notify the host when it is about to start and close a legacy application, respectively. These methods are
defined as follows:

public abstract void NotifyBeginApplication()
public abstract void NotifyEndApplication()

NotifyBeginApplicationis called by the Windows PowerShell engine to notify the host that it is about
to execute a “legacy”” application. Such an application can read from stdin, write to stdout, write to
stderr, or call any Win32 console API, and so on. Notifying the host before executing such an applica-
tion allows the host to do such things as save any state that might need to be restored when the legacy
application terminates. The engine always calls this method and the NotifyEndApplication () method
in matching pairs. These API are designed to support console-based shells. Legacy applications change
the console window title and hence affect the console hosting Windows PowerShell. To revert back

to the original window title before calling the legacy application, a console-based host developer can take
advantage of the NotifyBeginApplication() and NotifyEndApplication () methods. These methods
are called only when the application is run standalone, i.e., input, output and error are not redirected.

SetShouldExit

The setShouldExit () method is called by the Windows PowerShell engine to request the host to shut
down the engine. This method is defined as follows:

public abstract void SetShouldExit (int exitCode)

This is initiated by running the exit Windows PowerShell command. The exitCode accompanying the
exit command is passed as an argument to the method. The host is expected to stop accepting and
submitting pipelines to the runspace and to close the runspace after this method is called.

The following example creates a simple host to illustrate these concepts. This example creates a GUI-based
application hosting Windows PowerShell. It defines an implementation of PSHost and uses an instance
of this implementation to create a runspace. An input text box, invoke button, and output text box are
used to take input, invoke commands, and show results, respectively:

// Save this to a file using filename: PSbook-7-GUIHost.cs
using System;

using System.Collections;

using System.Collections.ObjectModel;

using System.Collections.Generic;

using System.Text;

using System.Threading;

using System.Globalization;

using System.Management.Automation;

using System.Management.Automation.Host;
using System.Management.Automation.Runspaces;

214

Chapter 7: Hosts

using System.Windows.Forms;

namespace PSBook.Chapter?7
{
public sealed class GUIPSHost : PSHost
{
// private data
private Guid instanceId;
private Version version;
private const string privateData = "gui host private data";
private PSGUIForm gui;
private Runspace runspace;

public GUIPSHost (PSGUIForm form) : base()
{
gui = form;
gui.InvokeButton.Click += new EventHandler (InvokeButton_Click) ;
instancelId = Guid.NewGuid() ;
version = new Version("0.0.0.1");

public void Initialize()

{
runspace = RunspaceFactory.CreateRunspace(this);
runspace.Open/() ;

private void InvokeButton_Click(object sender, EventArgs e)
{
// disable invoke button to make sure only 1
// command is running
gui.InvokeButton.Enabled = false;
Pipeline pipeline = runspace.CreatePipeline (gui.InputTextBox.Text) ;
pipeline.Commands [0] .MergeMyResults (PipelineResultTypes.Error,
PipelineResultTypes.Output) ;
pipeline.Commands.Add("out-string") ;
pipeline.Input.Close();
pipeline.StateChanged +=
new EventHandler<PipelineStateEventArgs> (pipeline_StateChanged) ;
pipeline.InvokeAsync () ;

private void pipeline_StateChanged(object sender, PipelineStateEventArgs e)
{
Pipeline source = sender as Pipeline;
// 1if the command completed update GUI.
bool updateGUI = false;
StringBuilder output = new StringBuilder () ;
if (e.PipelineStateInfo.State == PipelineState.Completed)
{
updateGUI = true;
Collection<PSObject> results = source.Output.ReadToEnd() ;
foreach (PSObject result in results)
{

string resultString =

215

Chapter 7: Hosts

(string) LanguagePrimitives.ConvertTo (result, typeof (string));
output.Append (resultString) ;

}
else if ((e.PipelineStateInfo.State == PipelineState.Stopped) ||
(e.PipelineStateInfo.State == PipelineState.Failed))

updateGUI = true;
string message = string.Format ("Command did not complete
successfully. Reason: {0}",
e.PipelineStateInfo.Reason.Message) ;
MessageBox.Show (message) ;
}
if (updateGUI)
{
PSGUIForm. SetOutputTextBoxContentDelegate optDelegate =
new
PSGUIForm.SetOutputTextBoxContentDelegate (gui.SetOutputTextBoxContent) ;
gui.OutputTextBox.Invoke (optDelegate, new object[] {
output.ToString ()});
PSGUIForm. SetInvokeButtonStateDelegate invkBtnDelegate =
new
PSGUIForm. SetInvokeButtonStateDelegate (gui.SetInvokeButtonState) ;
gui.InvokeButton.Invoke (invkBtnDelegate, new object[] { true});

public override Guid InstanceId
{

get { return instanceId; }

public override string Name
{
get { return "PSBook.Chapter7.Host"; }

public override Version Version

{

get { return version; }

public override CultureInfo CurrentCulture
{

get { return Thread.CurrentThread.CurrentCulture; }

public override CultureInfo CurrentUICulture
{

get { return Thread.CurrentThread.CurrentUICulture; }

public override PSObject PrivateData
{
get

216

Chapter 7: Hosts

return PSObject.AsPSObject (privateData) ;

public override void EnterNestedPrompt ()
{

throw new Exception("The method or operation

public override void ExitNestedPrompt ()
{
throw new Exception("The method or operation

public override void NotifyBeginApplication/()
{

throw new Exception("The method or operation

public override void NotifyEndApplication/()
{
throw new Exception("The method or operation

public override void SetShouldExit (int exitCode)
{

string message = string.Format ("Exiting with

exitCode) ;

MessageBox.Show (message) ;
runspace.CloseAsync () ;
Application.Exit () ;

public override PSHostUserInterface UI
{

get { return null; }

[STAThread]
public static void Main()
{
Application.EnableVisualStyles() ;

Application.SetCompatibleTextRenderingDefault (false) ;

// attach form to the host and start message loop

// of the form

PSGUIForm form = new PSGUIForm() ;
GUIPSHost host = new GUIPSHost (form) ;
host.Initialize(
(

)
Application.Run (form) ;

is

is

is

not

not

not

not

implemented.

implemented.

implemented.

implemented.

exit code: {0}",

7

217

Chapter 7: Hosts

// Save this to a file using filename: PSBook-7-GUIForm.cs
using System;
using System.Windows.Forms;

namespace PSBook.Chapter?7

{
public sealed class PSGUIForm : Form

{
public PSGUIForm()

{

InitializeComponent () ;

#region Public interfaces

public TextBox OutputTextBox
{

get { return outputTextBox; 1}

public TextBox InputTextBox

{
get { return inputTextBox; }

public Button InvokeButton
{

get { return invokeBtn; }

public void SetInvokeButtonState (bool isEnabled)

{
invokeBtn.Enabled = isEnabled;
inputTextBox.Focus () ;

public void SetOutputTextBoxContent (string text)

{
outputTextBox.Clear () ;
outputTextBox.AppendText (text) ;

public delegate void SetInvokeButtonStateDelegate (bool isEnabled) ;
public delegate void SetOutputTextBoxContentDelegate (string text);

#endregion

protected override void Dispose(bool disposing)
{

if (disposing && (components != null))

{

components.Dispose() ;

}

base.Dispose (disposing) ;

218

Chapter 7: Hosts

private void InitializeComponent ()

{
this.outputTextBox = new System.Windows.Forms.TextBox() ;
this.invokeBtn = new System.Windows.Forms.Button() ;
this.inputTextBox = new System.Windows.Forms.TextBox() ;
this.SuspendLayout () ;

//
// outputTextBox
// this.outputTextBox.BackColor = System.Drawing.Color.White;

this.outputTextBox.Font = new System.Drawing.Font ("Courier New", 8.25F,
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte) (0)));

this.outputTextBox.Location = new System.Drawing.Point (8, 41);

this.outputTextBox.Multiline = true;

this.outputTextBox.Name = "outputTextBox";

this.outputTextBox.ReadOnly = true;

this.outputTextBox.ScrollBars = System.Windows.Forms.ScrollBars.Both;

this.outputTextBox.Size = new System.Drawing.Size (365, 272);

this.outputTextBox.TabIndex = 2;

this.outputTextBox.WordWrap = false;

//

// invokeBtn

//

this.invokeBtn.Location = new System.Drawing.Point (298, 12);
this.invokeBtn.Name = "invokeBtn";

this.invokeBtn.Size = new System.Drawing.Size (75, 23);

this.invokeBtn.TabIndex = 1;

this.invokeBtn.Text = "Invoke";

this.invokeBtn.UseCompatibleTextRendering = true;

this.invokeBtn.UseVisualStyleBackColor = true;

//

// inputTextBox

//

this.inputTextBox.Font = new System.Drawing.Font ("Arial", 9F,
System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte) (0)));

this.inputTextBox.Location = new System.Drawing.Point (8, 12);

this.inputTextBox.Name = "inputTextBox";

this.inputTextBox.Size = new System.Drawing.Size (284, 21);

this.inputTextBox.TabIndex = 0;

//

// PSGUIForm

//

this.AutoScaleDimensions = new System.Drawing.SizeF (6F, 13F);

this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;

this.ClientSize = new System.Drawing.Size (394, 325);

this.Controls.Add (this.inputTextBox) ;

this.Controls.Add(this.invokeBtn) ;

this.Controls.Add (this.outputTextBox) ;

this.Name = "PSGUIForm";

this.Text = "PSBook Chapter 7";

this.ResumelLayout (false) ;

this.PerformLayout () ;

219

Chapter 7: Hosts

private System.Windows.Forms.TextBox outputTextBox;
private System.Windows.Forms.Button invokeBtn;

private System.Windows.Forms.TextBox inputTextBox;

private System.ComponentModel.IContainer components = null;

The preceding example creates an instance of a GUIPSHost and attaches a .NET form to the host. GUIP-
SHost creates a runspace and attaches a click event handler to monitor click events of the Invoke button
in the form. When the Invoke button is clicked, this handler creates a pipeline, taking the text from the
form’s input textbox as the command and then invoking the pipeline asynchronously. A pipeline Stat-
eChanged () handler listens to the pipeline state change events and notifies the form when the output is
ready. If the command execution fails, then a message box displays the reason for the failure. When the
exit command is invoked, the host exits gracefully, displaying the exit code, closing the runspace, and
exiting the application.

PSBook Chapter 7 N =1(53
$host [Invoke |
Name : PEBook.Chapter?._ Host
Tersion : 0.0.0.1
Instanceld : df7ecdbl0-EEbE-4a03-3cEl-e58add
I o System. Management Automation. I

terface
CurrentCultures o oen-TIE
CurrentUICulture : en-T3
DrivateData : gui host priwvate data
£ i | =

Figure 7-4: Notice the Name, Version, and PrivateData property values of
the $host variable. These are the properties defined by our GUIPSHost.

The Windows PowerShell pipeline actually performs the InvokeAsync asynchronous operation in a dif-
ferent thread called a Pipeline Execution Thread. This keeps the Ul thread of the form unblocked while
Windows PowerShell executes the command. However, when the command completes, the pipeline
state change notifications arrive in the pipeline execution thread. Hence, the pipeline StateChanged ()
handler cannot directly modify the UI controls such as output textbox, input textbox, and so on.

220

Chapter 7: Hosts

Controls created by the UI thread can only be modified from the UI thread. Therefore, the changes are
sent to the GUI form by posting a message to the UI thread’s message loop, using the Invoke () method
ofthe control.

Compile and run the executable generated:

PS D:\psbook> & Senv:windir\Microsoft.NET\Framework\v2.0.50727\csc.exe
/target:exe /r:system.drawing.dll /r:system.windo

ws.forms.dll /r:System.Management.Automation.dll
D:\psbook\Chapter7_GUIHost_Samplel\GuiForm.cs D:\psbook\Chapter7_GUIHos
t_Samplel\psbook-7-GUIHost.cs

Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.42

for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

PS D:\psbook> .\psbook-7-GUIHost.exe

The application will look like what is shown in Figure 7-4.

This application gets only the output and error messages from the pipeline. It’s not yet capable of dis-
playing messages such as verbose, debug, warning, progress, and so on. In the following section, you'll
learn how to get this data into your application.

PSHostUserlnterface Class

The PSHostUserInterface class is designed to enable hosting applications to register for user-interface-
related notifications that the Windows PowerShell engine raises. The Windows PowerShell engine
supports cmdlets and scripts that generate different kinds of data that should be made available to the
user immediately. Some cmdlets and scripts require user input, such as passwords, which may not be
passed directly as a parameter. The Windows PowerShell engine routes these notifications on behalf of
the cmdlets and scripts to the host using an instance of the PSHostUserInterface class.

The hosting application must register an instance of this class through the PsHost . UI property at the time
the runspace is created. If the value of the PSHost.UI property is null, then the Windows PowerShell
engine will not route the Ul-related notifications to the host. The PSHostUserInterface abstract class

is defined in System.Management.Automation.dll under the System.Management .Automation.Host
namespace. The abstract PSHostUserInteface base class looks like the following:

namespace System.Management.Automation.Host
{
public abstract class PSHostUserInterface
{
protected PSHostUserInterface() ;

public abstract void WriteDebugLine (string message) ;

public abstract void WriteVerboseline (string message) ;

public abstract void WriteWarningLine (string message) ;

public abstract void WriteProgress (long sourceld, ProgressRecord record) ;
public abstract void WriteErrorLine(string value) ;

public abstract void Write(string value);

public abstract void Write (ConsoleColor foregroundColor, ConsoleColor

221

Chapter 7: Hosts

backgroundColor, string value);

public virtual void WriteLine() ;

public abstract void WriteLine(string value) ;

public virtual void WriteLine(ConsoleColor foregroundColor, ConsoleColor
backgroundColor, string value);

public abstract PSHostRawUserInterface RawUI { get; }

public abstract Dictionary<string, PSObject> Prompt (string caption, string
message, Collection<FieldDescription> descriptions);

public abstract int PromptForChoice(string caption, string message,
Collection<ChoiceDescription> choices, int defaultChoice);

public abstract PSCredential PromptForCredential (string caption, string
message, string userName, string targetName) ;

public abstract PSCredential PromptForCredential (string caption, string
message, string userName, string targetName, PSCredentialTypes
allowedCredentialTypes, PSCredentialUIOptions options) ;

public abstract string ReadLine() ;

public abstract SecureString ReadLineAsSecureString() ;

There are some write methods and some read /prompt methods, all of which are intended to interact with
the user. Write methods are used to provide users with informational messages, whereas read/prompt
methods are used to take input from the user. Write methods are divided into different categories such as
debug, verbose, warning, progress, and so on. This offers more flexibility to the cmdlet/script developer
and hosting application developer. For example, cmdlet/script developers may choose to provide verbose
messages when the cmdlet/script completes an action, and debug messages to display the state of a
variable. In addition, a hosting application developer can choose to display verbose messages and debug
messages differently, thereby giving the end user more control over what is displayed and how.

Scripts access the host instance through $Host built-in variable. Cmdlets access the host through the Host
property of the Pscmdlet base class.

The following sections describe each member in the PSHostUserInterface class, including how the
Windows PowerShell engine interacts with these members, and offers guidelines for developers imple-
menting these members.

WriteDebuglLine

The writeDebugLine () method is called by the Windows PowerShell engine (on behalf of the cmdlet) to
send a debug message to the host. This method is defined as follows:

public abstract void WriteDebugLine (string message)

It is up to the host to handle the message in the manner it wants. The Windows PowerShell console
host writes the message immediately to the console window. Displaying debug messages by default
may annoy users, especially when the cmdlet generates huge amounts of debug data. In the Windows
PowerShell console window, debug and output messages are shown in the same window as they arrive.
If the cmdlet generates huge amounts of debug data and less output data, then the user may have to dig
through the console window to find the actual output.

222

Chapter 7: Hosts

To improve the experience, Windows PowerShell enables users to decide what to do with the debug
messages through the $DebugPreference variable. Every cmdlet in Windows PowerShell has access to
a base cmdlet method writeDebug (). The $DebugPreference variable can control debug messages only
if the ecmdlet calls the writeDebug () method of the base cmdlet. If the cmdlet chooses to call the host
directly, then $DebugPreference has no effect on such a message. Hence, it is recommended that you
use the WriteDebug () method of the base cmdlet class instead of calling the WriteDebugLine () method
of the host. Scripts should use the Write-Debug cmdlet as described earlier in the chapter.

WriteVerboselLine

The writevVerboseLine method is called by the Windows PowerShell engine (on behalf of the cmdlet) to
notify a verbose message to the host. This method is defined as follows:

public abstract void WriteVerboseLine (string message)

Again, it is up to the host to handle the message in the manner it wants. The Windows PowerShell console
host writes the message immediately to the console window. Windows PowerShell enables the user to
decide what to do with the verbose messages through the $vVerbosebPreference variable. Every cmdlet
in Windows PowerShell has access to a base cmdlet method writeverbose (). The $VerbosePreference
variable can control verbose messages only if the cmdlet calls the writeverbose () method of the base
cmdlet. If the emdlet chooses to call host directly, then $VerbosePreference has no effect on such a
message. Hence, it is recommended that you use the wWritevVerbose () method of the base cmdlet class
instead of calling the writeverboseLine () method of the host. Scripts should use the Write-verbose
cmdlet as described earlier in the chapter.

WriteWarningLine

The writewarningLine () method is called by the Windows PowerShell engine (on behalf of the cmdlet)
to send a warning message to the host. This method is defined as follows:

public abstract void WriteWarningLine (string message)

Windows PowerShell enables the user to decide what to do with the warning messages through

the $wWarningPreference variable. Like the WriteDebugLine () and WriteVerboseLine () methods,
this method should not be called directly. Instead, the cmdlet developer should call the WriteWarning ()
method of the base cmdlet class, and script developers should use the Wirite-Warning cmdlet.

WriteProgress

The writeProgress () method is called by the Windows PowerShell engine (on behalf of the cmdlet) to
notify a progress message to the host. This method is defined as follows:

public abstract void WriteProgress (long sourcelId, ProgressRecord record)

Debug, verbose, and warning messages typically do not include additional information other than the
message. Progress usually includes information such as percent completed, time remaining, and so on.
A hosting application can choose this more granular information to display a sophisticated UI to the
user. This granular information comes through a ProgressRecord object. It is up to the cmdlet or script
developer to generate the ProgressRecord object. Cmdlet/script developers should not call this host
method directly. Instead, developers should call the writeProgress () method of the base Cmdlet class or

223

Chapter 7: Hosts

use the Write-Progress cmdlet from a script. This way, the variable $ProgressPreference controls
whether the host receives the progress message or not. ProgressRecord has members such as per-
centComplete, SecondsRemaining, StatusDescription, and so on, which enable the host to display a
sophisticated UI, such as a progress bar.

WriteErrorLine

The WriteErrorLine () method is a special method that Windows PowerShell engine calls to notify an
error message. This method is defined as follows:

public abstract void WriteErrorLine(string value) ;

You might wonder why this is needed when a pipeline already has an error stream. When a pipeline is
running, all errors are routed through the error stream. However, when the Windows PowerShell engine
is starting up (Runspace.Open ()) there is no pipeline associated with it and hence no error stream. All the
nonfatal errors that occur during engine startup are sent through this host method. These nonfatal errors
include errors generated from parsing types files, parsing format files, loading assemblies, providers,
cmdlets specified in RunspaceConfiguration, and so on.

Write Methods

The following write methods are designed to notify a host to display a message immediately:

public abstract void Write(string value)

public abstract void Write (ConsoleColor foregroundColor, ConsoleColor
backgroundColor, string value)

public virtual void WriteLine();

public abstract void WriteLine (string value)

public virtual void WriteLine (ConsoleColor foregroundColor, ConsoleColor
backgroundColor, string value)

All these methods are called by the Windows PowerShell engine’s Format and Output (F&O) subsystem.
The methods were designed with the assumption that Windows PowerShell is hosted in a console-based
application. The F&O subsystem needs more control over what the output looks like in a console window.
For example, F&O needs to display a table with the Format-Table cmdlet, a list with the Format-List

cmdlet, and so on. These write () and WriteLine () methods assist the F&O subsystem in achieving this
task. Instead of directly using the Console.Write and Console.WriteLine () methods, these methods are
designed to make Windows PowerShell hostable in any application, not just console-based applications.

AwiriteLine () method variant is called to notify the host to display a message in the current line and
display future messages in a new line, following the current line. A write () method variant is called
to notify the host to just display the message in the current line. The foregroundColor and back-
groundColor parameters specify what colors to use as the foreground and background of a message,
respectively. However, the F&O subsystem does not take advantage of these foregroundColor and
backgroundColor parameters. See Figure 7-5 for an example.

Prompt Method

The Prompt () method is called by the Windows PowerShell engine whenever missing data is needed
from the user. This method is defined as follows:

224

Chapter 7: Hosts

public abstract Dictionary<string, PSObject> Prompt (string caption, string message,
Collection<FieldDescription> descriptions) ;

rite-host “Wost Message” ~forearound red -hachground gray

Figure 7-5: The F&O subsystem does not support message coloring in
version 1 of Windows PowerShell. The write-host cmdlet addresses this by
providing two parameters: ForegroundColor and BackgroundColor.

This method is called in situations where the user forgets to supply a value for a mandatory parameter,
as shown in the following example:

PS D:\psbook> stop-process

cmdlet stop-process at command pipeline position 1
Supply values for the following parameters:
Id[0]:

Here, the cmdlet parameter binder calls the Prompt () method. The hosting application is expected to take
input from the user based on the supplied descriptions and return the results. A caption and a message are
provided as hints to be displayed to the user. The results must be of type System.Collections.Generic.
Dictionary with the key being the name supplied with the descriptions parameter. For example, if descrip-
tions contain three entries with the names FirstParameter, SecondParameter, and ThirdParameter,

then the results should also contain three entries, with the key names being FirstParameter, SecondpPa-
rameter, and ThirdParameter, respectively. This ensures that the Windows PowerShell engine’s cmdlet
parameter binder correctly binds a parameter to its value. FieldDescription has the following members:

namespace System.Management.Automation.Host
{
public class FieldDescription
{
public FieldDescription(string name) ;
public Collection<Attribute> Attributes { get; }
public PSObject DefaultValue { get; set; }
public string HelpMessage { get; set; }
public bool IsMandatory { get; set; }
public string Label { get; set; }
public string Name { get; }
public string ParameterAssemblyFullName { get; }
public string ParameterTypeFullName { get; }
public string ParameterTypeName { get; }

public void SetParameterType (Type parameterType) ;

Name is used to uniquely identify the parameter field. HelpMessage is a message specific to the field,
used as a tip to the user to supply an appropriate value for the field. Defaultvalue is the default value
for this parameter field. This can be used to populate the UI with a default value. This is an instance

225

Chapter 7: Hosts

of type PSObject, so that it can be serialized and manipulated just like any pipeline object. IsManda-
tory indicates whether or not a value should be supplied for this field. Attributes will contain a set
of attributes that are attached to a cmdlet parameter declaration. The ParameterAssemblyFullName,
ParameterTypeFullName, and ParameterTypeName identify the parameter type and its assembly.

A cmdlet developer can take advantage of this method and call it directly without depending on the
Windows PowerShell engine’s cmdlet parameter binder in some cases where a parameter may not be
mandatory. This may be necessary in situations where user input is needed in the middle of processing
a command.

PromptForCredential

The PromptForCredential () methods are used to get credentials, i.e., username and password, from the
user. These methods are defined as follows:

public abstract PSCredential PromptForCredential (string caption, string message,
string userName, string targetName)

public abstract PSCredential PromptForCredential (string caption, string message,
string userName, string targetName, PSCredentialTypes allowedCredentialTypes,
PSCredentialUIOptions options)

These methods must return a PSCredential object holding username and password credentials. The
caption parameter provides a header to be displayed to the user. The message parameter provides a
short message describing what is expected. The username parameter provides the username for which
the credential is required. This may be null or empty, in which case the hosting application may need to
get the username along with the password from the user. The target parameter describes a target for
which the credential is needed. The options parameter provides additional context regarding whether
the username parameter is read-only, whether username syntax must be validated, and whether to
prompt for username and password even if the password is cached. Depending on the cmdlet’s needs, a
cmdlet developer may call this method differently.

Figure 7-6: Windows PowerShell’s console host displays a Ul like this to
collect credentials in a secure manner.

Because this is sensitive information, the hosting application must do everything necessary to pro-
tect the data. While taking password input from the user, make sure the display is secured (i.e., not
showing user-typed characters on the screen). Figure 7-6 shows a typical dialog for entering creden-
tials. The PromptForCredential () method is called by the Windows PowerShell engine to populate a

226

Chapter 7: Hosts

cmdlet parameter declared with the Credential attribute. For example, the Get-Credential cmdlet has
a parameter declared with the Credential attribute.

A hosting application is encouraged to deploy similar methods to collect credentials in a secure manner
from the user.

Read Methods

These methods are used to take user input other than parameter values, choice selections, and credentials:

public abstract string ReadLine()
public abstract SecureString ReadLineAsSecureString ()

ReadLine is used to get regular input from the user. ReadLineAsSecureString (), as the name suggests,
is used to get user input in a secure fashion. The host developer is expected to protect such data just like
the PromptForCredential () method. The Read-Host cmdlet calls these methods:

PS D:\psbook> S$SunsecureString = read-host
This is unsecured data

PS D:\psbook> S$SunsecureString

This is unsecured data

PS D:\psbook> $secureString = read-host -assecurestring
EREEE SRR SRR RS S SRR R R

PS D:\psbook> S$securestring

System.Security.SecureString

PS D:\psbook> $bstr =
[System.Runtime.InteropServices.marshal]::SecureStringToBSTR ($securestring)
PS D:\psbook> S$convertedString =
[System.Runtime.InteropServices.marshal]::PtrToStringAuto (Sbstr)

PS D:\psbook> [System.Runtime.InteropServices.marshall::ZeroFreeBSTR (Sbstr)
PS D:\psbook> S$convertedString

This is secured data

PS D:\psbook>

Notice how Windows PowerShell’s ConsoleHost protects the user input with read-host -assecure-
string. The preceding example also shows how to decrypt data from an instance of type System.
Security.SecureString.

The PSHostUserInterface class is designed to notify the host about certain messages, such as debug,
warning, prompt, and so on. The internal host’s display layout is not exposed to the Windows PowerShell
engine using this interface. As shown in the next section, in some circumstances the Windows Power-
Shell engine needs to access the host’s display. The following section discusses the PSHostRawUserIn-
terface class, which exposes the host’s display layout.

PSHostRawUserInterface Class

The Windows PowerShell engine needs minute details about how the Ul is structured. This is to support
paging for the out-Host cmdlet, to effectively compute the width of the Ul window for the out-String
cmdlet, and so on. This way, every hosting application may not need to implement similar functionality

227

Chapter 7: Hosts

to support various behaviors. The Windows PowerShell engine assumes that the Ul is represented as a
two-dimensional array of cells, with each cell holding a single character.

The PSHostRawUserInterface class is designed to represent the raw user interface of the Ul as viewed
by the Windows PowerShell engine. This interface was designed with the assumption that Windows
PowerShell is hosted only in console-based applications. Hence, some of the members may not make
sense for GUI-based applications, such as .NET forms-based applications. The hosting application must
register an instance of this class through the PSHost .UI.RawUI property when the runspace is created.
If the value of the PSHost .UI.RawUI property is null, then the Windows PowerShell’s F&O subsystem
may not be able to format certain data effectively.

For example, paging with the out-Host cmdlet may not work properly. The PSHostUserInterface
abstract class is defined in System.Management. Automation.dll under the System.Management .Auto-
mation.Host namespace. The abstract PSHostRawUserInteface base class looks like the following;:

namespace System.Management.Automation.Host
{
public abstract class PSHostRawUserInterface
{
protected PSHostRawUserInterface() ;
public abstract ConsoleColor BackgroundColor { get; set; }
public abstract Size BufferSize { get; set; }
public abstract Coordinates CursorPosition { get; set; }
public abstract int CursorSize { get; set; }
public abstract ConsoleColor ForegroundColor { get; set; }
public abstract bool KeyAvailable { get; }
public abstract Size MaxPhysicalWindowSize { get; }
public abstract Size MaxWindowSize { get; }
public abstract Coordinates WindowPosition { get; set; }
public abstract Size WindowSize { get; set; }
public abstract string WindowTitle { get; set; 1}

public abstract void FlushInputBuffer();

public abstract BufferCell[,] GetBufferContents (Rectangle rectangle);
public virtual int LengthInBufferCells (char source);

public virtual int LengthInBufferCells(string source) ;

public BufferCell[,] NewBufferCellArray(Size size, BufferCell contents);

public BufferCell[,] NewBufferCellArray(int width, int height, BufferCell
contents) ;

public BufferCell[,] NewBufferCellArray(string[] contents, ConsoleColor

foregroundColor, ConsoleColor backgroundColor) ;

public KeyInfo ReadKey () ;

public abstract KeyInfo ReadKey (ReadKeyOptions options);

public abstract void ScrollBufferContents (Rectangle source, Coordinates
destination, Rectangle clip, BufferCell fill);

public abstract void SetBufferContents (Coordinates origin, BufferCelll,]
contents) ;

public abstract void SetBufferContents (Rectangle region, BufferCell fill);

As shown in the preceding definition, the interface represents different metadata of the UlI, such as
CursorSize, CursorPosition, WindowSize, MaxWindowSize, Buf ferSize, and so on. Using this meta-

228

Chapter 7: Hosts

data, the Windows PowerShell out-Host cmdlet effectively pages data. The following table describes the
purpose of each of the properties in the PSHostRawUserInterface class:

Property Purpose

BackgroundColor Gets or sets the background color that is used to render
each character

ForegroundColor Gets or sets the foreground color that is used to render each
character

BufferSize Gets or sets the current size of the screen buffer, measured

in buffer cells

CursorSize Gets or sets the cursor size. The value must be in the range
0-100.

CursorPosition Gets or set the cursor position

WindowSize Gets or sets the current window size. The window size

must not be greater than MaxWindowSize.

MaxWindowSize Gets the size of the largest window possible for the current
buffer, current font, and current display hardware

WindowPosition Gets or sets the position of the view relative to the screen
bulffer, in characters. (0,0) is the upper-left corner of the
screen buffer.

WindowTitle Gets or sets the title bar text of the current Ul window
KeyAvailable A non-blocking call to examine whether a keystroke is
waiting

The Windows PowerShell engine depends on the BackgroundColor, ForegroundColor, BufferSize, and
WindowSize properties directly to format output. The rest of the members are not directly called by the
Windows PowerShell engine. A host developer should keep in mind that scripts may also depend on
some or all of these properties, so in order to provide script compatibility, it is recommended that you
properly support these interfaces as described above.

The ReadKey () method is intended to read keystrokes from the keyboard device. This method should
block until a keystroke is pressed. Scripts may use this to handle actual keypad keystrokes other than
traditional characters and to get granular details, such as whether the key is pressed down or up. For
example, to identify a Ctrl + A message, a scripter will call the Readkey () method, as shown in the
following example:

PS D:\psbook> $option =

[System.Management .Automation.Host.ReadKeyOptions]"IncludeKeyUp"
PS D:\psbook> $keyInfo = Shost.UI.RawUI.ReadKey ($Soption)

PS D:\psbook> S$keyInfo | fl VirtualKeyCode,ControlKeyState

VirtualKeyCode : 65
ControlKeyState : LeftCtrlPressed, NumLockOn

229

Chapter 7: Hosts

VirtualKeyCode 65 indicates that key ““A” is pressed on the keypad. ControlKeyState indicates that the
left Ctrl key is pressed and Num Lock is on.

The rest of the methods support cell manipulation. For example, a Buf ferCell looks like the following:

namespace System.Management.Automation.Host
{

public struct BufferCell

{

public BufferCell (char character, ConsoleColor foreground, ConsoleColor
background, BufferCellType bufferCellType) ;

public static bool operator !=(BufferCell first, BufferCell second);
public static bool operator ==(BufferCell first, BufferCell second);

public ConsoleColor BackgroundColor { get; set; }
public BufferCellType BufferCellType { get; set; }
public char Character { get; set; }

public ConsoleColor ForegroundColor { get; set; }
public override bool Equals(object obj);

public override int GetHashCode() ;

public override string ToString();

Effectively, a BufferCell represents a single character and its associated background color, foreground
color, and cell type. A cell type can be either complete, leading, or trailing. A leading cell type represents
the leading cell of a character that occupies two cells, such as an East Asian character. A trailing cell
type represents the trailing cell of a character that occupies two cells. The conditional operators handle
BufferCell comparisons. Two BufferCells are considered equal when the values of the individual
properties in each of the BufferCells are equal.

The GetBufferContents () method extracts the Buffercells for the identified screen coordinates:

public abstract BufferCell[,] GetBufferContents (Rectangle rectangle) ;

If the screen coordinates are completely outside of the screen buffer, a Buffercell array of zero rows
and columns should be returned. The resulting array should be organized in row-major order.

The setBufferContents () method copies the contents of the Buf ferCell array into the screen buffer
at the given origin, clipping it such that cells in the contents of the BufferCell array that would fall
outside the screen buffer are ignored:

public abstract void SetBufferContents (Coordinates origin, BufferCell[,] contents)

The following method copies the given character (identified by the £111 parameter) to all of the character
cells identified by the region rectangle parameter:

public abstract void SetBufferContents (Rectangle region, BufferCell fill);

230

Chapter 7: Hosts

If all four elements of the region parameter are set to “all’, then the entire screen buffer should be filled
with the given character.

All of the following methods are supposed to create a two-dimensional array of BufferCells:

public BufferCell[,] NewBufferCellArray(Size size, BufferCell contents);
public BufferCell[,] NewBufferCellArray(int width, int height, BuffercCell
contents) ;

public BufferCell[,] NewBufferCellArray(string[] contents, ConsoleColor

foregroundColor, ConsoleColor backgroundColor) ;

The first two variants create a two-dimensional BufferCells array and fill the array with the supplied
contents character. size represents the width and height of the resulting array. The third variant con-
structs the result array using the supplied contents string array. In this case, each string in the array is
observed and broken into multiple characters if needed.

The next two methods should return the number of Buffercells needed to fit the character or string
specified through the source parameter:

public virtual int LengthInBufferCells (char source)
public virtual int LengthInBufferCells(string source)

Remember that each BufferCell can hold at most one character. An East-Asian character might occupy
more than one BufferCell.

Summary

In this chapter you saw how a hosting application can take advantage of the PSHost, PSHostUserInter-
face, and PSHostRawUserInterface classes to get different forms of data from the Windows PowerShell
engine. The Windows PowerShell’s pipeline supports only input, error, and output data. Other forms
of data such as debug, verbose, warning, and so on, are notified through the host. A hosting application
must register an instance of PSHost to the runspace at runspace creation time to access these different
forms of data.

Cmdlet developers should take advantage of the WriteDebug (), WriteWarning(), WriteVerbose (), and
WriteProgress () methods defined in the base cmdlet class instead of calling host methods directly.
Script developers should take advantage of the write-Debug, Write-Warning, Write-Verbose, and
Wirite-Progress cmdlets. The hosting application must ensure thread safety of the PSHost, PSHostUser-
Interface, and PSHostRawUserInterface members. It is a good practice to maintain a 1:1 mapping
between a host and a runspace.

231

Formatting & Output

Formatting & Output is a single component of PowerShell that determines how objects are
displayed to the console. PowerShell enables users to provide custom formatting for types they
create or types that already exist in .NET or PowerShell. This custom formatting is controlled

via several configuration files, with the file naming convention of *. format.pslxml. These con-
figuration files are used by the format cmdlets (format-table, format-list, format-custom,
format-wide) to display text to the screen for the default console host (powershell.exe). The
best way to ensure that objects are displayed in a consistent manner is to add your own “views”
by creating your own format configuration file and adding them to the current session. Adding
your configuration file to the current session is done by using the update-formatdata cmdlet or by
including your file(s) with a snap-in.

This chapter provides an introduction to creating your own views for the different view types.

Included are several examples of format configuration, which can be used as a baseline for your
own custom formatting.

The Four View Types

Four view types are available when displaying objects to the console:

Q Table

O List

Q Wide

Q Custom

The table view displays the properties of each object in a single row using tabbed columns to sep-
arate the text for each. Each column has a column header that is the property name or something
similar. The list view displays properties for an object on a separate line using a name-value syntax.
Each object is thus one or more lines depending on how many properties are to be displayed for
each object. Blank lines are used to separate objects on the console for the list view. The wide view

Chapter 8: Formatting & Output

displays a single value for each object and formats them in columns. The wide view is the same as using
the dir /w command in cmd. exe. Unlike using dir in cmd. exe, however, the wide view can be used for
any object, not just files and directories. The custom view enables developers and users to create more
complex formatting for their objects than what is provided by the list, table, or wide views.

Each object type can have multiple views defined but only one view can be the “default” view. The
default view is the view that is used when no format-* cmdlet is explicitly specified. The default view
for each object is the first view encountered when reading the formatting configuration files. See the
section “Loading Your Formatting File(s)”” for more details on how to order your views to control the
default for your object types.

Table: format-table

The most popular view type for powershell.exe is the table view. If the default view for the object being
displayed is not the table view, it can be explicitly selected with the format-table cmdlet. See the section
“Formatting without *.format.pslxml” for more information about how to use format-table to override
the default view settings.

The following example console output shows the default table view for all file or directory objects:
PS C:\Documents and Settings\Owner> dir

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\Documents and Settings\Owner

Mode LastWriteTime Length Name

d---- 7/10/2007 4:12 AM Desktop
d-r-- 6/17/2007 10:03 PM Favorites
d-r-- 7/10/2007 3:39 AM My Documents
d-r-- 2/19/2007 11:39 PM Start Menu
d---- 8/20/2003 5:04 AM VSWebCache
d---- 6/9/2003 6:54 AM WINDOWS
-a--- 7/16/2007 11:28 AM 6291456 ntuser.dat
-a--- 8/28/2003 6:52 AM 921 reglog.txt

List: format-list

The list view displays properties in a sequential list format. The list view can be explicitly selected by
using the format-list cmdlet. It supports many of the same parameters as format-table to enable
users to specify what properties to display. The properties displayed in the following example console
output are different from the table view because a separate list view is defined for files and directory
objects:

PS C:\Documents and Settings\Owner> dir | format-list

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\Documents and Settings\Owner
Name : Desktop
CreationTime : 1/9/2003 6:58:58 AM

LastWriteTime : 7/10/2007 4:12:22 AM
LastAccessTime : 7/16/2007 3:06:42 PM

234

Chapter 8: Formatting & Output

Name
CreationTime
LastWriteTime

LastAccessTime :

Name
CreationTime
LastWriteTime

LastAccessTime :

Name

Length
CreationTime
LastWriteTime

LastAccessTime :

VersionInfo

Name

Length
CreationTime
LastWriteTime

LastAccessTime :

VersionInfo

: My Documents

1/9/2003 6:58:58 AM
7/10/2007 3:39:44 AM
7/16/2007 3:07:54 PM

Start Menu

: 1/9/2003 6:58:57 AM
: 2/19/2007 11:39:49 PM

7/16/2007 1:20:54 PM

: ntuser.dat

6291456

5/1/2005 4:16:41 PM
7/16/2007 11:28:04 AM
7/16/2007 11:44:53 AM

: reglog.txt

921

8/28/2003 6:52:35 AM
8/28/2003 6:52:35 AM
11/5/2006 1:04:04 AM

Custom: format-custom

Users can specify a custom view that is defined in the *. format.pslxml config file. For process objects
(system.Diagnostics.Process), the custom view creates a class declaration syntax-like view. The cus-
tom view should be used when you want to display information for an object in a way other than the
rigid table, list, or wide view structures. A good example of the custom view is the help information for
a cmdlet. The help objects have a custom view defined that enables them to be displayed in an easy to
read format with a lot of text.

PS C:\Documents and Settings\Owner> get-process powershell | format-custom

class Process
{
Id = 3916

Handles = 500
CPU = 30.734375

Name = powershell

Wide: format-wide

The wide view picks one property from the object to display and formats it in two tabular columns by
default. If no wide view is defined for the object type, the first property of the object to be found via
reflection is used (the first property alphabetically). The —autosize parameter creates as many columns
as the width of the output will allow without clipping text.

PS C:\Documents and Settings\Owner> dir | format-wide

Directory: Microsoft.PowerShell.Core\FileSystem::C:\Documents and Settings\Owner

235

Chapter 8: Formatting & Output

[Desktop] [Favorites]
[My Documents] [Start Menul
[VSWebCache] [WINDOWS]
ntuser.dat reglog.txt

PS C:\Documents and Settings\Owner> dir | format-wide -autosize
Directory: Microsoft.PowerShell.Core\FileSystem: :C:\Documents and Settings\Owner

[Desktop] [Favorites] [My Documents] [Start Menul] [VSWebCache]
[WINDOWS] ntuser.dat reglog.txt

Due to formatting in the book, the actual number of columns in the preceding output example might not
match what you see on your screen.

Formatting without *.format.psixml

Before we create an XML format file for displaying objects, let’s take a quick walk through some
examples of what you can accomplish by simply using the format-* cmdlets. This is important because
you will occasionally want to create a custom look and feel without the overhead of creating an XML
config file and adding it to the session. In these examples, format-1ist can be used interchangeably
with format-table to display the properties in list view format. The only difference is that format-
list doesn’t accept an —autosize parameter because it only displays one item per line.

Example 1: Display specific properties for format-table or format-list. “ft” is the alias for format-
table.

PS C:\Documents and Settings\Owner> dir | ft name, length

Name length

Desktop
Favorites
My Documents
Start Menu

VSWebCache

WINDOWS

ntuser.dat 6291456
reglog.txt 921

Example 2: Use wildcard matching to select which properties to display. This example displays the name
and any properties that end in time (e.g., CreationTime, LastAccessTime, LastWiriteTime).

PS C:\Documents and Settings\Owner> dir | ft name, *time

Name CreationTime LastAccessTime LastWriteTime
Desktop 1/9/2003 6:58:58 AM 7/18/2007 8:48:06 PM 7/18/2007
8:47:50 PM

Favorites 1/9/2003 6:58:58 AM 7/18/2007 8:45:07 PM 6/17/2007
10:03:57 PM

My Documents 1/9/2003 6:58:58 AM 7/18/2007 8:48:59 PM 7/10/2007

236

Chapter 8: Formatting & Output

3:39:44 AM

Start Menu 1/9/2003 6:58:57 AM 7/18/2007 1:51:28 PM 2/19/2007
11:39:49 PM

VSWebCache 8/20/2003 5:04:09 AM 7/14/2007 1:26:19 AM 8/20/2003
5:04:09 AM

WINDOWS 6/9/2003 6:54:05 AM 7/14/2007 1:26:20 AM 6/9/2003
6:54:05 AM

ntuser.dat 5/1/2005 4:16:41 PM 7/18/2007 9:49:14 AM 7/18/2007
9:34:46 AM

reglog. txt 8/28/2003 6:52:35 AM 11/5/2006 1:04:04 AM 8/28/2003
6:52:35 AM

Example 3: Use a ScriptBlock token to display a column with an expression, rather than a property,
for every object. Here, I want to display the day on which each file or directory was last written to. The
—autosize parameter is used to display results as compactly as possible, rather than splitting the screen
in half.

PS C:\Documents and Settings\Owner> dir | ft -auto name, {$S_.LastWriteTime.DayOfWeek}

Name $_.LastWriteTime.DayOfWeek
Desktop Wednesday
Favorites Sunday
My Documents Tuesday
Start Menu Monday
VSWebCache Wednesday
WINDOWS Monday
ntuser.dat Wednesday
reglog.txt Thursday

The preceding examples show how you can explicitly control the properties to be displayed for the table
and list views using the format-table and format-1list cmdlets. Similar control can be achieved with
format-wide but only a single property can be specified per object.

Format Configuration File Example

Now let’s create a simple format configuration file to display Process objects. The following listing con-
tains all the text necessary for a simple configuration file that adds another table view for Process objects.
This sample file is also on the www.wrox. com website for this book as file figure8_1.format.pslxml. You
can download the file from the website or type the following text and save it:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>MyProcessView</Name>
<ViewSelectedBy>
<TypeName>System.Diagnostics.Process</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Label >Name:ID</Label>

237

Chapter 8: Formatting & Output

</TableColumnHeader>
<TableColumnHeader>
<Label>Threads</Label>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<ScriptBlock>$_.ProcessName + ":
</TableColumnItem>
<TableColumnItem>
<PropertyName>Threads</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>

+ S

.Id</ScriptBlock>

After we add our format file to the session, we can use it by explicitly specifying the table view defined in
the XML. Note the column headers and how they match the values in the <TableColumnHeader> nodes
in the XML configuration file. In addition, note the output that results from the ScriptBlock command

for the <TableColumnItem> nodes.

PS C:\Documents and Settings\Owner> update-formatdata figure8_1.format.pslxml
PS C:\Documents and Settings\Owner> gps | ft -view myprocessview

Name:ID Threads

alg:544 {584, 720, 3748
CCEVTMGR: 628 {812, 904, 1036
cmd: 1940 {504}

cmd:3040 {1164}
csrss:500 {508, 512, 516,
ctfmon:2084 {2028}

Loading Your Format File(s)

, 3752...}
, 1040...}
520...}

Before we dissect the file and examine its individual elements, let’s look at the different mechanisms for
adding your format configuration file to the existing format configuration. There are three ways to make

your format files available for use:

0 Use the update-formatdata cmdlet.
0O Add asnap-in that has the format files included.

0 Use the public API of the RunspaceConfiguration class.

238

Chapter 8: Formatting & Output

The first two are the easiest and most common ways to add your files. The last one should only be used
when you are implementing your own custom host. This section provides details about these three
mechanisms.

Technically, there is a fourth method, editing the built-in format configuration files included with the
PowerShell installation, but it is not recommended. It’s easy enough to add your own views and ensure
that they are used by default or by specifying them using the —view parameter without editing the built-in
files directly.

Update-formatdata

The update-formatdata cmdlet loads the files specified by its -prependpath and -appendPath param-
eters. The prependpath parameter loads the configuration files and places them before the currently
loaded configuration. The appendpath parameter loads them after. The reason this distinction must be
made is because the default view for an object is the first view encountered for a given type name. Using
—prependPath places the views in your format file(s) before the built-in format files. This enables you to
override the default views for objects such as Process or FileSystem because regardless of the view’s
name, the first view found in the format configuration files is the one used for the output of that type.
This applies to all view types.

If the first view for an object happens to be a list view, then that will be the default output if no format-*
cmdlet is explicitly specified. If you use -appendpath to add your configuration file to the current session,
the existing default process view remains the default and you will have to explicitly specify your view
with the —view parameter. Because you can include multiple views in a single format configuration file,
be sure to place your default views for list, wide, and table near the top of the file.

When searching views by type name, PowerShell also takes into account object inheritance. If a view
is defined for a base class that has children classes derived from it, objects of the children’s type will
use the view defined for the parent class. The ViewSelectedBy lookup will match the view as closely to
the child class’s actual type as possible. Thus, an exact type name match would override the base class
type match. The following example changes the default process view by prepending the sample format
configuration file:

PS C:\Dev\games\SampleContentPipeline\SampleContentPipeline> gps powershell

Handles NPM(K) PM (K) WS (K) VM (M) CPU(s) Id ProcessName

240 5 27284 23412 135 0.61 3084 powershell

PS C:\Dev\games\SampleContentPipeline\SampleContentPipeline> update-formatdata
-prependPath figure8-1_table.format.pslxml

PS C:\Dev\games\SampleContentPipeline\SampleContentPipeline> gps powershell

Name:ID Threads

powershell:3084 {1780, 1052, 356, 2004}.

For more information on update-formatdata type PSH > help update-formatdata -full.

239

Chapter 8: Formatting & Output

Snap-ins

As discussed in Chapter 2, snap-ins are ways of packaging cmdlets, providers, and configuration files for
distribution and installation with PowerShell. Snap-ins usually add their own object types via the cmdlets
or providers included. If this is the case, it makes sense to include your format configuration files in the
same manner. This way, when you add a snap-in to the PowerShell session, those new types are added,
including information about how to display them; and no extra step using update-formatdata is needed.

RunspaceConfiguration API

Because the RunspaceConfiguration object is where the information from the format files is stored, you
can add your format files directly via the public RunspaceConfiguration API. Add your files to the
existing list of format configuration files and call the Update () method. The same logic applied for the
use of update-formatdata applies here for view ordering.

Using the public RunspaceConfiguration APIs should be reserved for cases where you want to avoid
using update-formatdata. One example that comes to mind is a graphical shell that limits the cmdlets
to be used such that update-formatdata isn’t available. Though this is possible, it is recommended that
you use update-formatdata. Or, if your format file is included with other cmdlets/providers, package
your format files as part of a snap-in.

Anatomy of a Format Configuration File

Each format configuration file must start with the <Configuration> and < ViewDefinitions > XML
nodes. One or more views are defined in a single format file and they are each enclosed within the
<View> node. Remember that the ordering of the views determines which views are used by default,
so plan which views should be placed earlier in the file.

Each view declaration consists of two areas. The first area has metadata about the view, such as the view’s
name, the type(s) it applies to, and optional group by information. The second area has the formatting
information, which indicates the type of view and what text is to be displayed to the console for each
object. This second area contains the entries that define exactly what is displayed for each object.

The following sections cover different aspects of the format configuration file in further detail. For the
table view discussion, refer to the format file in figure8_1.format.pslxml. Each view type has a com-
plete, valid configuration file that we will use for analysis purposes. These sample format files can be
found on the website as well. They could just as easily be combined into a single format file, but for
discussion purposes it is easier to look at them separately.

In addition to looking at the following examples, the reader is encouraged to examine the format con-
figuration files included with the installation of PowerShell. They are located in \%windir\%\system32\
windowspowershell\vl. 0. The following is a command to list the format files included with PowerShell:

PS C:\Documents and Settings\Owner> dir Senv:windir\system32\windowspowershell\v
1.0*.format.pslxml

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\WINNT\system32\windowsp
owershell\vl.0

240

Chapter 8: Formatting & Output

Mode LastWriteTime Length Name

————— 9/8/2006 12:28 22120 certificate.format.pslxml

AM
————— 9/8/2006 12:28 AM 60703 dotnettypes.format.pslxml
-a--- 7/20/2007 7:50 PM 19730 filesystem.format.pslxml
————— 9/8/2006 12:28 AM 250197 help.format.pslxml
————— 9/8/2006 12:28 AM 65283 powershellcore.format.pslxml
————— 9/8/2006 1:28 AM 13394 powershelltrace.format.pslxml
————— 9/8/2006 12:28 AM 13540 registry.format.pslxml

View

Multiple views can be defined in a single configuration file, and each of them is defined inside the
<View> node, which is directly under the <vViewDefinitions> node. The view has several proper-
ties, indicated by its children XML nodes, including Name, ViewSelectedBy, GroupBy (optional), and
one of the following, which indicates the type of view that is defined (the names are self-
explanatory):

Q <TableControl>
0 <ListControl>

Q <WideControl>
Qa

<CustomControl>

Name

This node specifies the name of the view. This name is what the user can supply to the —view parameter
for the format-1list and format-table cmdlets. This name must be unique for all views of the same
type of display. Otherwise, an error will occur when trying to add the view to the format configuration.
If you have multiple views defined for the same type name and the same view type (e.g., table), it is
important to understand that the default one to be used is the first one encountered when reading your
format configuration file. The section “Adding Your Format Configuration Files”” provides more infor-
mation about how to control the ordering of format files if you have multiple views in separate format
config files.

ViewSelectedBy

This child node of <view> indicates the objects by the type for which this view is defined. Typically, this
node will have a child node of <Typename>, and the object’s type is used as the lookup to find the correct
view. The full TypeName (displayed by get-member for a given object), which includes Namespace, must
be specified.

For example, the following view would be used for the Process objects that get-process returns:

<ViewSelectedBy>
<TypeName>System.Diagnostics.Process</TypeName>
</ViewSelectedBy>

241

Chapter 8: Formatting & Output

If the type in question happens to be an inner class, then the syntax of the TypeName is as follows:

<ViewSelectedBy>
<TypeName>Namespace.OuterClass+InnerClass</TypeName>
</ViewSelectedBy>

The following example illustrates the TypeName for a generic type. Note that you need to supply the fully
qualified name of the type that the generic type was created with. In this specific example, the type is
SomeGenericClass<int>:

<ViewSelectedBy>
<TypeName>Namespace.SomeGenericClass'1[[System.Int32, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]]</TypeName>
</ViewSelectedBy>

GroupBy

The GroupBy node causes similar objects to be grouped together in the resulting output. Some criteria is
specified via a propertyName or a scriptBlock expression, which is used to determine whether objects
are in the same group. When an object is encountered that doesn’t belong to same group as the pre-
vious object, a new group is created and some text is displayed to indicate that there is a new group.
The groupBy feature does not gather all the objects and then put them in unique groups. It simply cre-
ates a new group for an object if the object is different than the previous object displayed according to
the grouping criteria. This means the objects are still displayed in the same exact order in which they
are piped to the format-* cmdlet. The format-list and format-table cmdlets also have a —groupby
parameter that accomplishes the same thing.

Here’s some example output of the GroupBy feature that uses the file extension to group similar files from
the get-childitem cmdlet. This output clearly demonstrates that multiple groups for the same extension
were created because the file objects are in alphabetical order, not in order by extension:

PS C:\Documents and Settings\Owner\Desktop> dir | ft -view GroupByFileExtension
Extension:

Name Size
funny_stuff

MIDI_files

music_stuff

what_1is_this

Extension: .lnk

Name Size
Audacity.lnk 630
Bicycle Card Collection.lnk 1801

242

Chapter 8: Formatting & Output

Extension: .txt

Name Size

blues_piano_DVD_notes.txt 589
Extension: .lnk

Name Size

Reason. lnk 1425

Determining whether objects are in the same “group’” can be controlled by a property on the objects or a
script block. There’s also an optional <Label> that can be used to add more context to the text displayed
before each group.

What follows here is grouping by PropertyName with an optional <Label> tag. This example could be
applied to an additional view for FileSystem objects (files and directories), and would create groups
based on extension:

<Name>. . .</Name>

<GroupBy>
<PropertyName>Extension</PropertyName>
<Label>FileExtension</Label>

</GroupBy>

<ViewSelectedBy>. . .</ViewSelectedBy>

The next snippet shows an example of grouping by a script block that uses the object type. This might be
useful if you want to group similar objects that all derive from a single base class.

<GroupBy>
<ScriptBlock>$_.GetType () </ScriptBlock>
</GroupBy>

TableControl

The <TableControl> node indicates a table view. The table view has headers and rows that control the
label and display for each object. It is the only view that has a separate ““headers’” section.

TableHeaders

The <TableHeaders> node has zero or more <TableHeaderColumn> nodes. If no TableHeaderColumn
entries are present, then the column headers will be labeled according to the property name or script
block entries in the <TableRowEntry> section. Omitting the table headers is basically the same as explic-
itly setting values for the —properties parameter of the format-list or format-table cmdlet. The
property or script block specified is what is used to display for the header.

243

Chapter 8: Formatting & Output

When you want to control the text to display for each header, or you want to adjust the width or
alignment of the columns for your view, you should add TableHeaderColumn entries to your view:

<TableHeaders>
<TableColumnHeader>
<Label>coll</Label>
<Alignment>left</Alignment>
<Width>10</Width>
</TableColumnHeader>
<TableColumnHeader>
<Label>col2</Label>
</TableColumnHeader>
</TableHeaders>

The <Label> entry controls what is displayed for the column header. The <Alignment> node indicates
whether the text is left, right, or center justified. The <width> node indicates how many characters wide

the column should be.

TableRowEntries

The <TableRowEntries> section controls what is displayed for each individual object. Only one
<TableRowEntry> can be displayed for a given object. The <TableRowEntry> node has a
<TableColumnItems> node that defines one or more <TableColumnItem> nodes. The
<TableColumnItem> entries contain either a <PropertyName> node, which indicates the property

of the object to display, or a <ScriptBlock>, which contains an expression that produces a string to
display for that column. Typically, the script block will combine or use properties from the object (via
the underbar variable ““$_") to create a more meaningful result to display. The first full format config file
example contains examples of both the property name and the script block, and here they are again in

isolation:

<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<ScriptBlock>$_.ProcessName + ":" + $_.Id</ScriptBlock>
</TableColumnItem>
<TableColumnItem>
<PropertyName>Threads</PropertyName>
</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>

ListControl

The <Name>, <ViewSelectedBy>, and <GroupBy> nodes are defined and used in the same manner for
a list view as in a table view, as indicated in figure8_1.format.pslxml. The <ListControl> node

244

Chapter 8: Formatting & Output

indicates this is a list view. The list view includes <ListEntries> that correspond to rows. Each row

consists of a label and the value to display for the object:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>

<View>

<Name>MyProcessView</Name>
<ViewSelectedBy>
<TypeName>System.Diagnostics.Process</TypeName>
</ViewSelectedBy>
<ListControl>
<ListEntries>
<ListEntry>
<ListItems>
<ListItem>
<Label >Name:ID</Label>
<ScriptBlock>$_.ProcessName + ":
</ListItem>
<ListItem>
<!-- this label is redundant since it
matches propertyname -->
<Label >Threads</Label>
<PropertyName>Threads</PropertyName>
</ListItem>
</ListItems>
</ListEntry>
</ListEntries>
</ListControl>

" + $_.Id</ScriptBlock>

</View>

</ViewDefinitions>
</Configuration>

Following is the output that would result from using the preceding list view. This example assumes that

you've added the format file to the session configuration via update-formatdata:

PS C:\Documents and Settings\Owner> gps | f1 -view myprocessview

Name:ID alg:544
Threads {584, 720, 3748, 3752...}
Name:ID CCEVTMGR: 628
Threads {812, 904, 1036, 1040...}
Name: ID cmd:1940
Threads {504}

ListEntries

Each <ListItem> under <ListItems> indicates a row to be displayed for the object. An
optional <Label> can be supplied. If a label is not supplied, then the default is to use the property-
Name or ScriptBlock text as the left-hand-side label. The value to be displayed for that <listitem>
is either the value of the PropertyName property of the object or the result of the ScriptBlock

expression.

245

Chapter 8: Formatting & Output

Wide Control

The <wWideControl> XML node indicates a wide view. The wide view displays only a single value for
each object. This can be the value of a single property (indicated by <PropertyName>) or the result of
a script block expression (<scriptblock>). It is usually a good idea to keep the text displayed for each
object as short as possible so that multiple columns can be displayed. Otherwise, the wide view loses its
usefulness and is nothing more than a list view with a single value for each object.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>MyProcessView< /Name>
<ViewSelectedBy>
<TypeName>System.Diagnostics.Process</TypeName>
</ViewSelectedBy>
<WideControl>
<WideEntries>
<WideEntry>
<WideItem>
<ScriptBlock>$_.ProcessName + ":" + $_.Id + ", #Threads: "
+ $_.Threads.Count</ScriptBlock>
</WideItem>
</WideEntry>
</WideEntries>
</WideControl>
</View>
</ViewDefinitions>
</Configuration>

Following is the output after using update-formatdata to load the wide view format file:

PS C:\Documents and Settings\Owner> gps | fw -view myprocessview

alg:544, #Threads: 5 CCEVTMGR: 628, #Threads: 17
cmd:1940, #Threads: 1 cmd:3040, #Threads: 1
csrss:500, #Threads: 11 ctfmon:2084, #Threads: 1
CTSVCCDA:936, #Threads: 2 EvoInst:1064, #Threads: 2
explorer:3296, #Threads: 13 hpobnz08:3368, #Threads: 8

WideEntries

Unlike the other view types, for wide views only a single item is displayed for each object. There is
no label or header for wide views. The value to be displayed for the object is either the value of the
PropertyName property of the object or the result of a ScriptBlock expression. The <WideEntries>
node has one or more <wideEntry> nodes, each of which has a single <wideItem> node.

Custom Control

The <CustomControl> XML node indicates a custom view. The <Name>, <ViewSelectedBy>, and
<GroupBy> nodes are defined and used in the same manner for the custom view as they are for the
other views. The custom view allows greater flexibility in displaying objects. It doesn’t conform to the

246

Chapter 8: Formatting & Output

rigid table, list, or view structure, and allows more fine-grained control over how the output is formatted.
The following example is the included on the website as Figure8-4_custon. format.pslxml:

<?xml version="1.0" encoding="utf-8" ?>

<Configuration>
<ViewDefinitions>
<View>
<Name>MyProcessView</Name>
<ViewSelectedBy>
<TypeName>System.Diagnostics.Process</TypeName>
</ViewSelectedBy>
<CustomControl>
<CustomEntries>
<CustomEntry>
<CustomItem>
<Text>Process: </Text>
<NewLine/>
<Text>[</Text>
<NewLine/>
<Text> </Text>
<ExpressionBinding>
<ScriptBlock>$_.Name + ":" + $_.ID</ScriptBlock>
</ExpressionBinding>
<NewLine/>
<Text> </Text>
<ExpressionBinding>
<ScriptBlock>[int] ($_.WorkingSet/1024) </ScriptBlock>
</ExpressionBinding>
<Text> MB</Text>
<NewLine/>
<Text>]</Text>
</CustomItem>
</CustomEntry>
</CustomEntries>
</CustomControl>
</View>
</ViewDefinitions>
</Configuration>

The following example output assumes that the format file is in the current directory:
PS C:\Documents and Settings\Owner> Update-FormatData figure8-4_custom.format.pslxml
PS C:\Documents and Settings\Owner> gps svchost | fc -view MyProcessview

Process:

[
svchost:756
4024MB

1

Process:

[
svchost:836
4532MB

247

Chapter 8: Formatting & Output

]

Process:

[
svchost:868
28604MB

CustomEntries

<CustomEntries> indicates the beginning of the <CustomEntry> nodes. The <CustomEntry> has a
single <CustomItem> node that controls how each object is formatted. The <Text> and <NewLine>
nodes allow more precise placement of text. The <ScriptBlock> and <PropertyName> nodes must be
placed inside the <ExpressionBinding> nodes. The <CustomItem> definition can have an arbitrary
number of text, new line, or expression binding nodes defined within it.

Note that the white space inside <Text> nodes is preserved and can be used for indentation purposes.

Miscellaneous Configuration Entries

This section discusses two separate format configuration entries that can be used to “hard-code” the
formatting behavior of your objects. The <wrap> and <autosize> nodes can be used to control text
wrapping for table views, and autosizing for table and list views.

Wrap

This entry in the format configuration file indicates that text that would cause the row to exceed

the width of the console display should be wrapped to the next line, as opposed to being truncated.
The default behavior is to truncate the line. To indicate text wrapping, the <wrap> node is placed inside
the <TableRowEntry> for which it is to be used. This is generally used in the table view because the list
view wraps text by default and the wide view avoids wrapping altogether.

<TableRowEntry>
<Wrap/>
<TableColumnItems>
<!-- insert TableColumnItems here -->
</TableColumnItems>
</TableRowEntry>

AutoSize

The table and wide views can specify autosizing as part of the view. Place the <Autosize> node directly
under the <TableControl> or <WideControl> node:

<TableControl>
<AutoSize/>

248

Chapter 8: Formatting & Output

<TableHeaders>

</TableHeaders>
<TableRowEntries>

</TableRowEntries>
</TableControl>

Scenarios

This section discusses some typical user scenarios that warrant specific examples. The example
format files presented here may not be complete, but they contain enough of the configuration file to
demonstrate each scenario. For each of the scenarios covered here, you can find the full format con-
figuration file on the book’s website. In cases where source code is necessary, those files are included
as well.

Format Strings

A discussion of custom formatting objects wouldn’t be complete without mentioning formatting strings.
Format strings can be used within a script block expression to accomplish specific formatting of an object,
such as DateTime; or a specific FormatString XML node can be declared to do this.

The following example uses a FormatString entry to display the start time of a Process object in
table view:

<TableColumnItem>
<PropertyName>StartTime</PropertyName>
<FormatString>{0:MMM} {0:dd} {0:HH}:{0:mm}</FormatString>
</TableColumnItem>

This next example, from the filesystem. format.pslxml file, shows how the LastWriteTime is formatted
for all file and directory objects:

<TableColumnItem>
<ScriptBlock>
[String]::Format ("{0,10} {1,8}", $_.LastWriteTime.ToString("d"), $_.Last-
WriteTime.ToString("t"))
</ScriptBlock>
</TableColumnItem>

In a ScriptBlock expression, you can call any method on the object. Therefore, if it has overloads of
ToString () that take format string parameters, you can call that method as well to create your output
string.

249

Chapter 8: Formatting & Output

Formatting Deserialized Objects

Deserialized objects are created from serialized XML that results from export-clixml. Import-clixml
creates deserialized objects from the intermediate XML (usually in file format). What’s important to
understand is that the deserialized objects differ from the original objects in a number of ways.

First, the object is considered dead. This means that instead of having an instance of the original object,
the deserialized object is really a Psobject object with properties. For example, calling methods on a
deserialized pProcess object won’t work. The methods don’t exist and there is no instance of a process
object to invoke them against.

Second, all the properties that existed for the original “’live” object may not be present in the deserialized
object. The properties that are serialized to XML are controlled via the serialization properties in the
type’s configuration file.

Lastly, the type of the object is different. For example, if the original object’s type name was System.
Diagnostics.Process, the deserialized object’s type name is Deserialized.System.Diagnostics.
Process.

The different type names enable PowerShell to treat deserialized objects differently from their original
“live”” counterparts if desired. For formatting purposes, you can choose to use the same view for deseri-
alized objects, create different views, or not provide any view for them at all and let default formatting
take place. When defining a view, it is possible to add multiple type names to the ViewSelectedBy node.
Here’s an example of what the viewSelectedBy node would look like for live and deserialized Process
objects:

<ViewSelectedBy>
<TypeName>System.Diagnostics.Process</TypeName>
<TypeName>Deserialized.System.Diagnostics.Process</TypeName>
</ViewSelectedBy>

Make sure that if a single view is formatting deserialized objects, it doesn’t access any methods in the
script block that rely on a live instance of the object. Stick to properties and you should be OK.

Class Inheritance

The <ViewSelectedBy> type name for a view takes into account inheritance and will be used for objects
of derived types if no view is defined for that explicit type. Some scenarios may require more fine-grained
control, and in this section you will learn about the available options and trade-offs involved in creating
useful views for class hierarchies.

The simplest way of handling objects that inherit from each other is to define a view for the base class
type. The view lookup will match derived types against the base class type view. This works great if
you want to display the same properties for all the objects in the hierarchy. However, when you need to
display different properties based on the derived type from the base class, it gets tricky.

The type of the first object to be displayed is used to determine which view to use. If all the objects to
be displayed are of the same type, then this causes no problems. For example, assume you have the

250

Chapter 8: Formatting & Output

class hierarchy included on the website as Figure8-5.cs, which can be compiled into an assembly and
installed as a snap-in using InstallUtil.exe. Make sure the figure8-5_inheritance. format.pslxml
format file is in the same directory as the compiled assembly. The directory of the assembly becomes
the ApplicationBase setting in the Registry, which is used as the base path when searching for
configuration files.

Here is the example class hierarchy:

public abstract class Employee

...}

public class Tester : Employee

.0}

public class Developer : Employee

...

public class Manager : Employee
{ . ..}

The format configuration file included has a table view defined for CustomFormatting.Employee and
CustomFormatting.Manager. The view for the Manager type has an extra column for the DirectReports
property. Consider the following output:

PS C:\Documents and Settings\Owner> get-employees

Name Role Level
John Tester Test 61
Jane Tester Test 62
Frankie Dev Dev 61
Vinny Dev Dev 61
Joey Dev Dev 62
George Manager Dev Mgr 63
Jeff Manager Test Mgr 63

PS C:\Documents and Settings\Owner> get-employees -emp manager

Name Role Level # Reports
George Manager Dev Mgr 63 3
Jeff Manager Test Mgr 63 2

The manager view is only selected if the first object from the get-employees cmdlet is of type Manager.
Recall that with the table view, only one view can be selected, and the same columns for each object are
displayed. If the Manager objects were first, then non-Manager objects would simply display blank text
for the # Reports column, as the DirectReports property doesn’t exist for those types.

There is not much more you can do with the table view in this case. The first view wins and sets the
column headers. With list, custom, and wide views, however, you can display different results based on
type within the view. For the list view, this is accomplished by adding extra <ListEntry> nodes under
<ListControl>. You can key on the type name and decide to display the extra property for Manager
types. This is done by adding an <EntrySelectedBy> node under the <ListEntry> node. The first

251

Chapter 8: Formatting & Output

<ListEntry> is used for Manager objects, and all other objects that derive from Employee use the second
ListEntry, which doesn’t include the DirectReports property. Here’s an excerpt that shows this:

<View>
<Name>Employee</Name>
<ViewSelectedBy>
<TypeName>CustomFormatting.Employee</TypeName>
</ViewSelectedBy>
<ListControl>
<ListEntries>
<ListEntry>
<EntrySelectedBy>
<TypeName>CustomFormatting.Manager</TypeName>
</EntrySelectedBy>
<ListItems>
<ListItem>
<PropertyName>Name</PropertyName>
</ListItem>
<ListItem>
<PropertyName>Role</PropertyName>
</ListItem>
<ListItem>
<PropertyName>Level </PropertyName>
</ListItem>
<ListItem>
<PropertyName>DirectReports</PropertyName>
</ListItem>
</ListItems>
</ListEntry>
<ListEntry>
<ListItems>
<ListItem>
<PropertyName>Name< /PropertyName>
</ListItem>
<ListItem>
<PropertyName>Role</PropertyName>
</ListItem>
<ListItem>
<PropertyName>Level </PropertyName>
</ListItem>
</ListItems>
</ListEntry>
</ListEntries>
</ListControl>
</View>

The same concept applies to wide and custom views. The same example format file includes
multiple <wWideEntry> definitions. One of them uses the <EntrySelectedBy> node to display
manager names inside square brackets, while other objects display just the name with no
brackets.

252

Chapter 8: Formatting & Output

Selection Sets

When you have a group of objects that are related (through inheritance or in other similar ways) and you
want them to use the same view, it is possible to create a selection set. A selection set is indicated by the
<SelectionSet> XML node. This node can contain multiple type names, which are used to determine
what view is to be selected for an object. This is handy in cases where you might be defining multiple
views for that same set of objects. Rather than enter the type names in every view’s <vViewSelectedBy>
node, you can simply refer to the selection set. This also makes it easier to add or remove types from that
set that will trickle down to all the views using it.

The <Selectionset> definition is outside the <ViewDefinitions> node but under the
<Configuration> node. The following example shows how to create a selection set for all the file and
directory objects, as well as their deserialized counterparts. In fact, this example is plucked directly from
the filesystem. format.pslxml file included with PowerShell:

<Configuration>
<SelectionSets>
<SelectionSet>
<Name>FileSystemTypes</Name>
<Types>
<TypeName>System.IO.DirectoryInfo</TypeName>
<TypeName>System.IO.FileInfo</TypeName>
<TypeName>Deserialized.System.IO.DirectoryInfo</TypeName>
<TypeName>Deserialized.System.IO.FileInfo</TypeName>
</Types>
</SelectionSet>
</SelectionSets>
<ViewDefinitions>
<View>
<Name>Files</Name>
<ViewSelectedBy>
<SelectionSetName>FileSystemTypes</SelectionSetName>
</ViewSelectedBy>
<TableControl>

</TableControl>
</View>
</ViewDefinition>
</Configuration>

Colors

Because format files may contain script blocks, those script blocks may access the host APIs directly (via
the built-in variable $host) to change the color of the foreground or background text. This makes it pos-
sible to customize the text colors of your environment to your heart’s content. This also means that you
can use the information from an object to change the color of text for that object as it is being displayed.
This involves adding your own format file, as well as a little trickery regarding the out-default cmdlet.

For example, suppose that you want to display Process objects in different colors based on the amount
of memory they are currently using (via Workingset). The following format configuration file displays

253

Chapter 8: Formatting & Output

the process information in red if WorkingSet is greater than 20MB, in yellow if between 10 and 20MB,
and in green if less than 10MB:

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
<View>
<Name>ProcessViewWithColors</Name>
<ViewSelectedBy>
<TypeName>System.Diagnostics.Process</TypeName>
</ViewSelectedBy>
<TableControl>
<TableHeaders>
<TableColumnHeader>
<Label>Name:ID</Label>
</TableColumnHeader>
<TableColumnHeader>
<Label >WorkingSet</Label>
</TableColumnHeader>
</TableHeaders>
<TableRowEntries>
<TableRowEntry>
<TableColumnItems>
<TableColumnItem>
<ScriptBlock>$_.ProcessName + ":" + $_.Id</ScriptBlock>
</TableColumnItem>
<TableColumnItem>

<ScriptBlock>
if ($_.workingset -gt 20MB) { S$host.ui.rawui.foregroundcolor = "red"}
elseif ($_.workingset -gt 10MB) { $host.ui.rawui.foregroundcolor = "yellow"}
else { Shost.ui.rawui.foregroundcolor = "green"}
[int] ($_.WorkingSet/1024)
</ScriptBlock>

</TableColumnItem>
</TableColumnItems>
</TableRowEntry>
</TableRowEntries>
</TableControl>
</View>
</ViewDefinitions>
</Configuration>

After adding this format file to the configuration via update-formatdata and using it to display Process
objects from get-process, you may notice that the console text color is still the same as whatever the
last row’s color happened to be. Unfortunately, there’s no way to specify in the format configuration
file that it should be set back to its original value after the last object is displayed. There is, however, a
workaround using out-default.

The out-default cmdlet is what actually is invoked when no format-* cmdlet is specified. It is possible
to customize the behavior of out-default by defining a function of the same name. The function will be
invoked because command discovery will try to match a command string to functions before cmdlets.
Therefore, use the following text from a script and dot-source the script to ensure that it is defined

254

Chapter 8: Formatting & Output

in the current session. Here, the out-default function will set the foreground text to gray after displaying
the objects:

function out-default
{

BeginProcessing ()
#begin{}

ProcessRecord()
process {}

#EndProcessing ()
end
{
$input | & (Get-Command -Type Cmdlet Out-Default)
$host.UI.RawUI.ForegroundColor="Gray"
}
}

Be aware that using this function will not display any objects until all objects have been streamed through
the pipeline. The out-default cmdlet displays them as they’re streamed. This is only noticeable if the
number of objects being displayed is large. Defining this function and using the cmdlet-style syntax
enables you to include custom script code before and after objects are displayed to the screen.

Summary

It is hoped that this chapter has provided enough detail for you to start creating your own format config-
urations files. Described in this chapter were the four different view types: table, list, wide, and custom.
You also saw examples of how to use the format-* cmdlets to override the default formatting behavior.
Finally, you examined each part of the XML format configuration file for the different view types, and
used update-formatdata to add formatting files to the current session. Keep in mind that the ordering
of the views is important when determining the default view for an object, as well as the view used for
each different view type.

The sample format files should serve as a good baseline for creating your own custom formatting. It is

recommended that you examine the format configuration files included with PowerShell, as they may
spark ideas for your own custom formatting.

255

I

Cmdlet Verb Naming
Guidelines

Windows PowerShell uses a verb-noun pair format to name cmdlets. When you are naming your
cmdlets, you should specify the verb part of the name using one of the predefined verb names
provided in the following tables. By using one of these predefined verbs, you ensure consistency
between the cmdlets you create and those provided by Windows PowerShell and others.

The following lists of verbs are officially recommended by Microsoft. For the latest information,
please refer to documents in the PowerShell SDK.

Common Verbs

Windows PowerShell uses the VerbsCommon class in the System.Management . Automation names-
pace to define verbs that are common in nature. The verbs defined in this class are described in the
following table.

The “Common parameters” section in the Comment column contains a list of parameters commonly
defined for this kind of cmdlet. The ““Do not use” section of the Comment column contains verbs
whose meaning overlaps with the common verb, and which should not be used. The “Use with”
section of the Comment column contains a list of verbs that can be used for related cmdlets.

Appendix A: Cmdlet Verb Naming Guidelines

Verb Name Description Comment
Add Add, append, or attach an Common parameters: At, After, Before, Create,
element Filter, ID, Name, Value
Do not use: Append, Attach, Concatenate, Insert
Use with: Remove
Clear Remove all elements or Do not use: Flush, Erase, Release, Unmark, Unset,
content of a container Nullify
Copy Copy a resource to another Common parameters: Acl, Overwrite, Recurse,
name or another container Strict, WhatIf
Do not use: Duplicate, Clone, Replicate
Get Get the contents, object, Common parameters: All, As, Compatible,
children, properties, relations, Continuous, Count, Encoding, Exclude, Filter,
and so on, of a resource Include, ID, Interval, Name, Path, Property,
Recurse, Scope, SortBy
Do not use: Read, Open, Cat, Type, Dir, Obtain,
Dump, Acquire, Examine, Find, Search
Use with: Set
Lock Lock a resource Use with: Unlock
Move Move a resource Do not use: Transfer, Name, Migrate
New Create a new resource Common parameters: Description, ID, Name, Value
Do not use: Create, Generate, Build, Make, Allocate
Use with: Remove
Remove Remove a resource from a Common parameters: (Get), Drain, Erase, Force,
container Whatlf
Do not use: Delete, Disconnect, Detach, Drop,
Purge, Flush, Erase, Release
Use with: Add, New
Rename Give a resource a new name
Set Set the contents, object, Common parameters: PassThru
properties, relations, and so Do not use: Write, Reset, Assign, Configure
on, of a resource
Use with: Get
Join Join, or unite, so as to form Use with: Split
one unit
Split Split an object into portions, Use with: Join
parts, or fragments
Select Choose from among several;
pick out
Unlock Unlock a resource Use with: Lock

258

Appendix A: Cmdlet Verb Naming Guidelines

Data Verbs

Windows PowerShell uses the VerbsData class in the System.Management .Automation namespace to
define the verbs commonly used when the cmdlet manipulates data. The verbs defined in this class are
described in the following table.

Verb Name Description Comment
Backup Backs up data
Checkpoint Creates a snapshot of the current state of the data or its Use with: Restore
configuration so that the state can be restored later
Compare Compares the current resource with another resource Do not use: Diff
and produces a set of differences
Convert Converts one encoding to another or from one unit to
another (such as converting from feet to meters)
ConvertFrom Changes data from one format or encoding to another, Use with: ConvertTo,
where the source format is described by the noun name Convert
of the emdlet. If data is being copied from a persistent
data store, use Import.
ConvertTo Changes data from one format or encoding to another, Use with:
where the destination format is described by the noun ConvertFrom, Convert
name of the cmdlet. If data is being copied to a persistent
data store, use Export.
Dismount Detaches an entity from a pathname location
Export Copies a set of resources to a persistent data store. If Do not use: Extract,
there is no persistent data store, use Convert, Backup
ConvertFrom, or ConvertTo.
Import Creates a set of resources from data in a persistent data Do not use: Bulkload,
store, such as a file. If there is no persistent data store, Load
use Convert, ConvertFrom, or ConvertTo.
Initialize Assigns a beginning value to a resource so that it is Do not use: Erase,
ready for use Renew, Rebuild,
Reinitialize, Setup
Limit Limits the consumption of a resource or applies a Do not use: Quota
constraint to a resource
Merge Creates a single data instance from multiple instances
Mount Attaches an entity to a pathname location Use with: Dismount
Restore Rolls back the data state to a predefined set of conditions Use with: Checkpoint
Update Updates a resource with new elements Do not use: Refresh,
Renew, Recalculate,
Re-index
Out Sends data out of the environment

259

Appendix A: Cmdlet Verb Naming Guidelines

Communication Verbs

Windows PowerShell uses the VerbsCommunications class in the System.Management .Automation
namespace to define the verbs commonly used in communications. The verbs defined in this class are
described in the following table.

Verb Name Description Comment

Connect Associates an activity with a resource Use with: Disconnect

Disconnect Disassociates an activity from a Use with: Connect
resource

Read Reads from a target Use with: Write

Receive Acquires elements from a source Use with: Send

Do not use: Read, Accept, Peek

Send Sends elements to a destination Use with: Receive

Do not use: Put, Broadcast, Mail, Fax

Write Writes to a target Use with: Read

Diagnostic Verbs

Windows PowerShell uses the VerbsDiagnostic class in the System.Management . Automation names-
pace to define the verbs commonly used for diagnostics. The verbs defined in this class are described in
the following table.

Verb Name Description Comment

Debug Interacts with a resource or activity for the
purpose of finding a flaw or a better
understanding of what is occurring

Measure Identifies the resources that are consumed by a
specified operation or retrieves statistics about a
resource

Ping Determines whether a resource is active and

responding to requests

Resolve Maps a shorthand name to a long name

Test Verifies the operation or consistency of a resource Do not use: Diagnose, Verify,
Analyze, Salvage, Verify

Trace Tracks the activities that are performed by a

specified operation

260

Appendix A: Cmdlet Verb Naming Guidelines

Lifecycle Verbs

Windows PowerShell uses the VerbsLifeCycle class in the System.Management . Automation namespace
to define the verbs commonly used for lifecycle management. The verbs defined in this class are described
in the following table.

Verb Name Description Comment
Disable Stops an activity of the cmdlet, or configures an Use with: Enable
item to be unavailable so that it cannot start again
Enable Configures something to be available (for example, Use with: Disable
configures something so that it is able to start)
Install Places a resource in the indicated location and Do not use: Setup
optionally initializes it. Use with Uninstall.
Restart Terminates existing activity and starts it again Do not use: Recycle
with the same configuration. It uses a checkpoint
to determine the configuration.
Resume Starts an activity again after it has been suspended = Use with: Suspend
Start Starts an activity Use with: Stop
Do not use: Launch, Initiate,
Boot
Stop Discontinues an activity Use with: Start
Do not use: End, Kill,
Terminate, Cancel
Suspend Pauses an activity Use with: Resume
Do not use: Verbs such as
Pause
Uninstall Removes a resource from an indicated location Use with: Install

Security Verbs

Windows PowerShell uses the VerbsSecurity class in the System.Management . Automation namespace
to define the verbs commonly used for security-related tasks. The verbs defined in this class are described
in the following table.

Verb Name Description Comment

Block Prevents access to a resource Use with: Unblock
Grant Grants access to a resource Use with: Revoke
Revoke Revokes access to a resource Use with: Grant
Unblock Permits access to a resource Use with: Block

261

Cmdlet Parameter Naming
Guidelines

Parameter names should be consistent across different cmdlets. Windows PowerShell defines and
recommends the parameter names provided in this appendix. Cmdlet developers should choose
from this list when possible. The tables presented here list recommended parameters from the
following categories:

Q Ubiquitous parameters
Activity parameters
Date/Time parameters
Format parameters
Property parameters
Quantity parameters

Resource parameters

O 00U 000U

Security parameters

Ubiquitous Parameters

Parameter Name Type Description

Debug Boolean Enables debugging

ErrorAction Enum Tells the command what to do on error (e.g., stop, inquire)

ErrorVariable String Identifies a variable in which to place the command’s error object

Appendix B: Cmdlet Parameter Naming Guidelines

Parameter Name Type Description

Verbose Boolean Progress of the operation is displayed on the progress stream

Confirm Boolean Asks the user before the action is performed. This parameter is used
for cmdlets that support shouldprocess only.

WhatlIf Boolean This parameter is used for cmdlets that support shouldprocess only.

Activity Parameters

Parameter Name Type Description

CaseSensitive Boolean true = case sensitive, false = ignore case

Command String What command should be run

Compatible String Identifies what semantics to be compatible with (used for backward
compatibility when changing semantics)

Compress Boolean

Compress Keyword

Confirm Boolean Asks the user before an action is performed

Continuous Boolean Keeps getting more information

Create Boolean Determines whether to create a resource if one does not already exist

Delete Boolean Deletes resources when done

Drain Boolean

Erase Int32 Specifies the number of times a resource should be erased when it is
deleted

Errors String Name of the variable in which error records will be stored

ErrorLevel Int32 Level of problem to report

ErrorLimit Int32 Maximum number of errors that should occur before the command
is cancelled

Exclude String

Exclude Keyword

Fast Boolean

Filter String

Follow Boolean Tracks progress of an activity

264

Appendix B: Cmdlet Parameter Naming Guidelines

Parameter Name Type Description
Force Boolean
Ignore Array of
keywords
Incremental Boolean
Insert Boolean
Interactive Boolean
Interval Hashtable of ~ For example, /interval {resumescan < = 15, retry < = 3}
keyword/
values
Log Boolean Progress of operation is displayed on the progress stream
Migrate Boolean
Notify Boolean Indicates completion of an operation
Notify Email Indicates completion of an operation
address
Overwrite Boolean
PassThru Boolean
Prompt String
Quiet Boolean
ReadOnly Boolean
Recurse Boolean
Repair Boolean or
string
Retry Int32
Select Array of List of items to select
keywords
SortBy String
Strict Boolean Considers any error a terminating error
Temp Pathname Location for temporary data
Temp Boolean Changes are temporary
TimeOut Seconds
Trace Boolean Internal operations are displayed on the progress stream
Truncate Boolean
Update Boolean Same as VERB

265

Appendix B: Cmdlet Parameter Naming Guidelines

Parameter Name Type Description

Verbose Boolean Controls the quantity of data to retrieve/display

Verify Boolean Performs a test to ensure that an action occurred

Wait Int32 Number of seconds the command will wait for required

resources to become available

Wait Boolean Waits for user input before continuing
Warning Boolean Controls whether optional warning messages are displayed
Whatif Boolean Shows what would occur if the command actually ran (e.g., logs

activities that would take place)

Write Boolean vs /Readonly

Date/Time Parameters

Parameter Name Type

Description

Accessed Boolean
After DateTimeExpression
Before DateTimeExpression
Created Boolean
Modified Boolean
Since DateTimeExpression
TimeStamp Boolean

Specifies which time /Before or /Since refers to.
Incompatible with /Modified or /Created.

Specifies which time /Before or /Since refers to.
Incompatible with /Modified or /Accessed.

Specifies which time /Before or /Since refers to.
Incompatible with /Created or /Accessed.

Sets or gets Timestamp

Fo

rmat Parameters

Parameter Name Type

Description

As Keyword
AsScript Boolean
AsText CodePage

Text, script
Outputs results as an msh script

Treats binary elements as text using the specified codepage

266

Appendix B: Cmdlet Parameter Naming Guidelines

Parameter Name Type Description

Binary Boolean

Char Int32

Elapsed Boolean Shows elapsed time
Encoding Keyword Ascii, UTFS8, Unicode, UTF7
Exact Boolean

Format String

NewLine Boolean

Shortname Boolean Uses short names (e.g., 8.3 for filesystem)
Width Int32

Wrap Boolean

Property Parameters

Parameter Name Type Description

Cache Keyword

Count Int32

Default Boolean

Description UserDescriptionString

From ResourceName Reference object to get information from

Id Int32

Input FileSpec

LineCount Int32

Logname String

Location String Reference object to get information from

Name String

Output FileSpec

Owner String

Parameter Hashtable Mechanism to pass attribute/values through a common
command

Password Password

267

Appendix B: Cmdlet Parameter Naming Guidelines

Parameter Name Type Description

Priority Int32

Property String Property name

Reason UserDes- Explanation for occurrence
criptionString

Regex Boolean Use regex instead of wildcarding for this command

Statistic Keyword

Size Int32

Speed Pair of int32 Baud rate (input, output)

State Array of Named state (e.g., KEYDOWN)
keywords

Value Object

Version VersionSpecifier

Quantity Parameters

Parameter Name Type Description

All Boolean

Allocation Int32 Number of items to allocate
BlockCount Int64

Count Int64

Most Boolean Sensible subset of all

Scope Keyword

Resource Parameters

Parameter Name Type Description
Assembly String

Application String

Attribute String FileSystem attributes
Class Classname For example, type

268

Appendix B: Cmdlet Parameter Naming Guidelines

Parameter Name Type Description
Cluster Clustername
Directory String Directory or namespace location to perform an activity. When
null, it specifies that the directory (not its contents) should be
used.

Domain String Domain name
Drive String Drive name, e.g., C:
Event String Event name
FileName Pathname
Interface Interface- Network interface name

Name
IpAddress IpAddress
Job String
Mac MacAddress
NodeName Array of Node to operate on

nodenames
ParentID Int32
Port String Int for networking, but string for other types of port (e.g., biztalk)
Printer PrinterName
Size Int32
TID String Transaction ID
Type String Type of resource to operate on
URL String
User Username

Security Parameters

Parameter Name Type Description

ACL

CertFile FileName A file containing a Base64 or DER-encoded x.509
certificate or a PKCS#12 file containing at least one
certificate and key

CertlssuerName String A string indicating the issuer of a certificate, or a

substring

269

Appendix B: Cmdlet Parameter Naming Guidelines

Parameter Name Type Description
CertRequestFile FileName A file containing a Base64 or DER-encoded PKCS#10 certificate
request
CertSerialNumber String Serial number issued by a cert authority
CertStoreLocation ~ String Location of the certificate store. Typically, a file path.
CertSubjectName String A string indicating the issuer of a certificate, or a substring
CertUsage String A string representing the enhanced key usage or key usage. Can
be represented as a bit bask, a bit, an OID, or a string.
CSPName String Name of the certificate service provider (CSP)
CSPType Integer Type of CSP
Group String A collection of principals
KeyAlgorithm String Key generation algorithm
KeyContainerName String Name of the key container
KeyLength Int Key length, in number of bits
Operation String An action that can be performed on a protected object
Principal String Unique identifiable entity
Privilege Array of
Privs
Privilege String The ability to perform an operation
Role String Group of operations
SaveCred Boolean Use save credentials
Scope String Group of protected objects
SID String Unique identifier representing a principal
Trusted Boolean
TrustLevel Keywords
(Internet,
intranet,
fulltrust, etc.)

270

Y
Metadata

A key mechanism that enables the off-the-shelf parameter binding available to cmdlet developers
is PowerShell’s cmdlet metadata. Cmdlet metadata is a set of NET custom attribute types that are
applied to cmdlet classes and their members, and which provide the PowerShell execution engine
with information necessary to run the cmdlets. Along with derivation from the cmdlet base classes,
cmdlet metadata is what makes a .NET class a cmdlet.

The metadata attributes can be grouped into three general sets: the CmdletAttribute class, which
is applied to the cmdlet class itself; the Parameter and Alias attributes, which are used to indi-
cate that public properties and fields are cmdlet parameters; and the validation and transformation
attributes, which enable a cmdlet developer to set restrictions on incoming data. One of the vali-
dation attributes, ValidateArgumentsAttribute, is not applied to parameters directly, but can be
inherited and extended for custom validation and transformation.

Besides being directly applied to cmdlet parameters in code, the parameter metadata attributes can
also be created at runtime and applied to dynamically created pseudo-parameters of cmdlets, and
to the Attributes collection of PowerShell session-state variables.

This appendix serves as a reference describing the cmdlet metadata attribute classes, and provides
examples of their use.

CmdletAttribute

The CmdletAttribute metadata is used to label a .NET class as a cmdlet class. In order to be rec-
ognized as a cmdlet, a class must derive from one of the cmdlet base classes and be marked with a
Cmdlet attribute.

The CmdletAttribute metadata can be applied to classes that derive from one of the cmdlet
base classes.

Appendix C: Metadata

Properties

String NounName The noun part of the cmdlet’s name

String VerbName The verb part of the cmdlet’s name

String DefaultParameterSetName The name of the cmdlet’s default parameter set

bool SupportsShouldProcess Boolean indicating whether the cmdlet implements the
ShouldProcess mechanism

enum ConfirmImpact Indicates the risk level of data loss associated with running this
cmdlet. Possible levels are High, Medium, Low, and None. The
remove-item cmdlet, for example, would have a level of High.

Cmdiet Attribute Example

[Cmdlet ("get", "widget",
public class GetWidgetCmdlet :
{...}

ParameterAttribute

The ParameterAttribute metadata is used to label properties and fields of cmdlet classes as
parameters. During the parameter binding stage of cmdlet execution, data from the command line and
from the incoming object stream is dynamically bound to the cmdlet parameter properties and fields,
using the information in ParameterAttribute as a guide.

SupportsShouldProcess = false)]

Cmdlet

The ParameterAttribute metadata can be applied to public properties and fields.

Properties
Int Position For positional parameter binding, a zero-based index of this
parameter’s position on the command line
String ParameterSetName The name of the parameter set to which this parameter
belongs
bool Mandatory Indicates whether this parameter must always be specified
bool ValueFromPipeline Indicates that this parameter takes its value from the
incoming object stream
bool ValueFromPipeline- Indicates that this parameter takes its value from a named
ByPropertyName property on objects in the incoming object stream
bool ValueFromRemaining- Indicates that this parameter takes its value from any
Arguments command-line arguments that cannot be bound to other
parameters
String HelpMessage A tooltip-like help message
String HelpMessageBaseName The resource base name for a localizable help message
String HelpMessageResourceld The resource identifier for a localizable help message

272

Appendix C: Metadata

ParameterAttribute Example

[Parameter (Position = 0, ParameterSetName = "FileOperations",
Mandatory = true)]

public string FileName

{...}

[Parameter (ParameterSetName = "FileOperations",
ValueFromPipeline = true)]

public string WidgetName

{...}

[Parameter (ParameterSetName = ParameterAttribute.AllParameterSets,
ValueFromRemainingArguments = true)]

public string[] ExtraArguments

{...}

O The HelpMessage, HelpMessageBaseName, and HelpMessageResourceld properties are present
in PowerShell 1.0, but they are never used by the default host or cmdlets. These properties are
intended for use by graphical hosts.

QO The ParameterAttribute class also has a static string field named AllParameterSets, which can
be used to indicate that a parameter applies to all parameter sets.

QO Multiple Parameter attributes for different parameter sets can be applied to one property or field
in the cmdlet class.

AliasAttribute

The AliasAttribute metadata enables the cmdlet developer to give a parameter multiple names without
duplicating all of the information in the ParameterAttribute class. It is applied to properties and fields
that also bear ParameterAttribute metadata.

The AliasAttribute can be applied to public properties and fields marked with Parameterattribute.

Properties

String[] AliasNames The set of alternative names for this parameter

AliasAttribute Example

[Parameter ()]

[Alias ("FullFilePath", "SomethingElse")]
public string FileName

{...}

Argument Validation Attributes

The argument validation attributes can be further subdivided into attributes that limit incoming data to
a set, pattern, length, count, or range of values; attributes that allow or disallow special values, such as
null; and customizable attributes that validate or transform the incoming data.

273

Appendix C: Metadata

ValidateSetAttribute

The validateSetAttribute metadata enables the developer to specify a set of valid values for a
parameter. If a cmdlet is executed and an attempt is made to bind to the parameter a value that doesn’t
fall within the specified set, a parameter binding error will occur and the cmdlet will not execute.

The validateSetAttribute metadata can be applied to public properties and fields marked with
ParameterAttribute.

Properties
IList<String> ValidValues The set of valid values for this parameter
bool IgnoreCase Indicates whether the set should be matched in a
non-case-sensitive way. The default value is true.

ValidateSetAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[ValidateSet ("Visa", "Discover", "MasterCard")]
public string CardType

{...}

ValidatePatternAttribute

The validatePatternAttribute metadata is used to restrict a parameter’s value based on whether or
not the incoming data matches a regular expression pattern.

The validatePatternAttribute metadata can be applied to public properties and fields marked with
ParameterAttribute.

Properties

String RegExPattern ~ The pattern to be used for the match

RegExOptions =~ RegExOptions A set of flags that control the behavior of .NET’s
regular expression implementation

ValidatePatternAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[ValidatePattern("[0..9][0..9]1[0..9] [A..Z][A..Z][A..Z]")]
public string LicensePlate

(...}

ValidateLengthAttribute

The validateLengthAttribute metadata is used to restrict a parameter’s value based on the length of
an incoming string.

274

Appendix C: Metadata

The validateLengthAttribute metadata can be applied to public properties and fields marked with

ParameterAttribute.

Properties

Int32 MinLength The minimum length of the incoming string

Int32 MaxLength The maximum length of the incoming string

ValidateLengthAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[ValidateLength (4, 10)]
public string PartCode

{...}

ValidateCountAttribute

The validateCountAttribute metadata is used to restrict a collection parameter’s value based on the
number of elements in the collection.

The validateCountAttribute metadata can be applied to public properties and fields marked with

ParameterAttribute.

Properties

Int32 MinLength The minimum number of elements to be bound to the parameter

Int32 MaxLength The maximum number of elements to be bound to the parameter

ValidateCountAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[ValidateCount (2, 4)]
public string[] DaysOfThelWleek

{...}

ValidateRangeAttribute

The validateRangeAttribute metadata is used to restrict a parameter’s value based on a range of pos-
sible values, which are specified as objects of a type that implements IComparable.

The validateRangeAttribute metadata can be applied to public properties and fields marked with

ParameterAttribute.

275

Appendix C: Metadata

Properties

Object MinRange The minimum value in the range

Object MaxRange The maximum value in the range

ValidateRangeAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[ValidateRange ("charlie", "whiskey")]
public string AlphaBravoCode

{...}

When used as a hard-coded custom attribute, the input values are limited to objects that can be expressed
as literals in code. However, an instance of this attribute can be created at runtime and applied to a
pseudo-parameter of a cmdlet. In this case, the range objects can be anything you can create at runtime.

Allow and Disallow Attributes
AllowNuliAttribute

The AllowNullAttribute metadata is used to indicate that a parameter can accept a null value.

The AllowNullAttribute metadata can be applied to public properties and fields of reference types,
marked with parameteraAttribute.

AllowNullAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[AllowNull ()]
public string Name

(...}

AllowEmptyStringAttribute

The AllowEmptyStringAttribute metadata is used to indicate that a string parameter can accept an
empty value. By default, a parameter binding exception will be thrown if an empty string is passed to a
string parameter.

The AllowEmptyStringAttribute metadata can be applied to public properties and fields of type string,
marked with ParameterAttribute.

AllowEmptyStringAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[AllowEmptyString ()]
public string Name

(...}

276

Appendix C: Metadata

AllowEmptyCollectionAttribute

The AllowEmptyCollectionAttribute metadata is used to indicate that a collection parameter can
accept an empty value.

The AllowEmptyCollectionAttribute metadata can be applied to public properties and fields of
collection types, marked with ParameteraAttribute.

AllowEmptyCollectionAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[AllowEmptyCollection ()]
public string[] Names

(...}

ValidateNotNullAttribute

The validateNotNullAttribute metadata is used to indicate that a reference type parameter cannot
accept a null value.

The validateNotNullAttribute metadata can be applied to public properties and fields of reference
types, marked with ParameteraAttribute.

ValidateNotNullAttribute Example

[Parameter (Position = 0, Mandatory = true)]
public Process Job

(...}

ValidateNotNullOrEmptyAttribute

The ValidateNotNullOrEmptyAttribute metadata is used to indicate that a collection type parameter
cannot accept a null or empty value. It also validates that none of the members of an incoming collection
are null.

The ValidateNotNullOrEmptyAttribute can be applied to public properties and fields of collection or
string types, marked with ParameterAttribute.

ValidateNotNullOrEmptyAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[ValidateNotNullOrEmpty ()]
public Process[] Jobs

(...}

CredentialAttribute

The credentialAttribute metadata type is derived from the ArgumentTransformationAttribute class
described in the next section. It transforms incoming objects into PSCredential objects.

277

Appendix C: Metadata

The CredentialAttribute metadata can be applied to public properties and fields marked with Param-
eterAttribute

CredentialAttribute Example

[Parameter (Position = 0, Mandatory = true)]
[Credential ()]
public String Username

{...}

Extending Parameter Metadata Attributes

PowerShell provides three inheritable classes for creating custom parameter metadata attributes. Two
of these can be used for validation, and the third can be used to dynamically modify or replace objects
before they are bound to the cmdlet’s parameters.

ValidateArgumentsAttribute

The validateArgumentsAttribute type is a base class for custom parameter validation attributes

that validate an argument as a single object. It can be applied to nothing; you must first derive
from it.

ValidateArgumentsAttribute Example

public class ValidateIsInMyAssemblyAttribute :
ValidateArgumentsAttribute
{
protected override void Validate (object arguments,
EngineIntrinsics enginelntrinsics)
{
if (!arguments.GetType () .Assembly == this.GetType() .Assembly)
{
throw new ParameterBindingException (
string.Format ("'{0}' isn't in my assembly.",
arguments.GetType () .Name)) ;

To create a custom validation attribute from the validateArgumentsAttribute class:

Q Create a public class that derives from ValidateArgumentsAttribute.

a Override the validate () method and add logic that throws a ParameterBindingException if
your custom condition is false.

Collections passed to a parameter marked with this metadata will be passed to validate as a single
object without first being enumerated.

278

Appendix C: Metadata

ValidateEnumeratedArgumentsAttribute

The validateEnumeratedArgumentsAttribute type is a base class for custom parameter validation

attributes that validate the individual elements in a collection object. It can be applied to nothing; you
must first derive from it.

ValidateEnumeratedArgumentsAttribute Example

public class ValidateAllInMyAssemblyAttribute
{

: ValidateEnumeratedArgumentsAttribute

protected override void ValidateElement (object element)

{

if (!'element.GetType().Assembly == this.GetType() .Assembly)
{

throw new ParameterBindingException (
string.Format ("'{0}"' isn't in my assembly.",
element.GetType () .Name)) ;

To create a custom validation attribute from the validateEnumeratedArgumentsAttribute class:

0 Create a public class that derives from ValidateEnumeratedArgumentsAttribute.

QO Override the validateElement () method and add logic that throws a ParameterBindingExcep-
tion if your custom condition is false.

Collections passed to a parameter marked with this metadata will be enumerated and each element of
the collection will be passed to ValidateElement individually.

ArgumentTransformationAttribute

The ArgumentTransformationAttribute type is a base class for custom parameter validation attributes

that perform transformations on incoming objects. It can be applied to nothing; you must first derive
from it.

ArgumentTransformationAttribute Example

public class TurnBeansIntoPeasAttribute :
ArgumentTransformationAttribute
{
public override object Transform(EngineIntrinsics enginelntrinsics,

object inputData)
{

if (inputData.ToString().ToLower () == "bean")
{

return "pea'";
}

return inputData;

279

Appendix C: Metadata

To create a custom validation attribute from the ArgumentTransformationAttribute class:

a Create a public class that derives from ArgumentTransformationAttribute.

Q Opverride the Transform() method and add logic that returns a possibly transformed version of
the input object.

Collections passed to a parameter marked with this metadata will be passed to Transform as a single
object without first being enumerated.

Adding Attributes to Dynamic Parameters
at Runtime

Typically, parameter metadata of PowerShell cmdlets is defined in source code as .NET custom attributes.
It’s possible, however, for a cmdlet to enumerate its parameters at runtime, by implementing the
IDynamicParameters interface. If the IDynamicParameters implementation returns a RuntimeDefined-
ParameterDictionary, then the attribute classes must be created dynamically at runtime and added

to the Attributes collection of each parameter. The following code demonstrates how you can add a
ValidateRangeAttribute to a dynamic parameter at runtime:

[Cmdlet ("filter", "name")]
public class FilterNameCmdlet : Cmdlet, IDynamicParameters
{

RuntimeDefinedParameter firstName = new RuntimeDefinedParameter () ;

protected override void ProcessRecord()
{
WriteObject (firstName.Value) ;

public object GetDynamicParameters ()
{
RuntimeDefinedParameterDictionary parameters = new RuntimeDefined-
ParameterDictionary () ;

// Set the name and type of the parameter
firstName.Name = "FirstName";
firstName.ParameterType = typeof (string) ;

// Add a parameter attribute and a range attribute
firstName.Attributes.Add (new ParameterAttribute());
firstName.Attributes.Add (new ValidateRangeAttribute ("Erin", "Jonathan"));

// Add the parameter to the collection and return it

parameters.Add (firstName.Name, firstName) ;
return parameters;

280

Appendix C: Metadata

ValidateScriptAttribute

The PowerShell public API defines one more attribute class we haven’t mentioned, and which is not
documented in the SDK. The ValidateScriptAttribute metadata takes a PowerShell script block as its
sole parameter, and therefore is not definable at compile time in the C# language. ValidateScriptAt-
tribute can, however, be instantiated at runtime and applied to dynamic parameters or session-state

variables.

281

Provider Base Classes and
Overrides/Interfaces

This appendix lists cmdlet provider base classes and interfaces that you may derive from to
implement a PowerShell provider. A brief description is provided along with each method and

property.

CmdletProvider

CmdletProvider is a base class for all derived Windows PowerShell provider classes. It is possible
for derive a class from this base class, but in most cases you would derive your classes from some

derived classes such as the following:

QO ItemCmdLetProvider: Derive from this class to expose an item as a PowerShell path and to
support provider cmdlets such as Get-PSProvider.

a ContainerCmdletProvider: Derive from this class to support provider core cmdlets such as
rename, move, and copy.

0 NavigationCmdletProvider: Derive from this class to support navigation against a data
store that has multiple levels.

Here is the prototype for the CmdletProvider base class:

namespace System.Management.Automation.Provider

{
public abstract class CmdletProvider

{
//The credential used to run an operation
public PSCredential Credential { get; }

Appendix D: Provider Base Classes and Overrides/Interfaces

//Wildcard patterns to determine which items are excluded
//when performing an action.
public Collection<string> Exclude { get; }

//The provider-specific filter supplied by the caller
public string Filter { get; }

//Whether to try vigorously to perform an operation
public SwitchParameter Force { get; }

//The host interaction APIs
public PSHost Host { get; }

//Wildcard patterns to determine which items are included
//when performing an action.
public Collection<string> Include { get; }

//Get the command invocation API for the current runspace
public CommandInvocationIntrinsics InvokeCommand { get; }

//Get the provider interface APIs for the current runspace
public ProviderIntrinsics InvokeProvider { get; }

//Get the session state for the current runspace
public SessionState SessionState { get; }

//Whether a stop request has been made on the provider.
public bool Stopping { get; }

//Get the dynamic parameters specified by the user.
protected Object DynamicParameters { get; }

//Get information about the current PowerShell provider.
protected internal ProviderInfo ProviderInfo { get; }

//Get the drive for the current operation
protected PSDrivelInfo PSDriveInfo { get; }

//Query user to confirm whether PowerShell should proceed
//with an operation.

//

//Both should-process and should-continue can be used to
//confirm an operation with the user. While the behavior of

284

Appendix D: Provider Base Classes and Overrides/Interfaces

//ShouldProcess can be affected by preference settings and
//command-line parameters that can specify whether the query
//is displayed to the user, the behavior of ShouldContinue
//is not affected by preference settings or command-line
//parameters.
public bool ShouldContinue (

string query,

string caption

)i
public bool ShouldContinue (string query,

string caption,

ref bool yesToAll,

ref bool noToAll

)

//Query user to confirm an operation before making changes
//to the system.
//
//Both should-process and should-continue can be used to
//confirm an operation with the user. While the behavior of
//ShouldProcess can be affected by preference settings and
//command-line parameters that can specify whether the query
//1is displayed to the user, the behavior of ShouldContinue
//1is not affected by preference settings or command-line
//parameters.
public bool ShouldProcess(string target);
public bool ShouldProcess (

string target,

string action
)
public bool ShouldProcess (

string verboseDescription,

string verboseWarning,

string caption
)
public bool ShouldProcess (

string verboseDescription,

string verboseWarning,

string caption,

out ShouldProcessReason shouldProcessReason

) ;

//PowerShell provider should call this method when encounter
//a fatal error. Call WriteError method for nonfatal error.
public void ThrowTerminatingError (

ErrorRecord errorRecord

)

//Writes a debug message to the host.
public void WriteDebug (
string text

)

285

Appendix D: Provider Base Classes and Overrides/Interfaces

//Call this method write a error record to the pipeline
//and the provider will continue to perform more operations.
public void WriteError (

ErrorRecord errorRecord

)

//Write an item to the output as a PSObject object
public void WriteItemObject (

Object item,

string path,

bool isContainer
)

//Write a progress record to the host. This method is called
//to display the progress of a PowerShell provider for a long
//running operation. The behavior of progress status can be
//configured through the ProgressPreference variable.
public void WriteProgress (

ProgressRecord progressRecord

)

//Write a property object to the output
public void WritePropertyObject (

Object propertyValue,

string path
)

//Writes a security descriptor object to the output
public void WriteSecurityDescriptorObject (
ObjectSecurity securityDescriptor,
string path
)

//Write a message to the host for informational purpose
public void WriteVerbose (
string text

)

//Write a warning message to the host. The behavior of
//Warning messages can be configured through the
//WarningPreference variable or the Verbose and Debug
//command-1line options.
public void WriteWarning (

string text

)

286

Appendix D: Provider Base Classes and Overrides/Interfaces

//Get the resource string from the current assembly that
//corresponds to the specified base name and resource
//identifier. Override this method if a different behavior
//is required.
public virtual string GetResourceString (

string baseName,

string resourcelId

)

//PowerShell runtime call this method to initialize the
//provider when the provider is loaded into a session.
//The default implementation of this method returns the object
//specified in the providerInfo parameter. Provider should
//override this method if it needs to initialize the provider
//with additional information.
protected virtual ProviderInfo Start(

ProviderInfo providerInfo

)

//Call this method to add more parameters to the Start method
//implemented by a PowerShell provider.
protected virtual Object StartDynamicParameters() ;

//The PowerShell runtime calls this method before it removes
//a provider. A PowerShell provider should override this
//method to free any resources before the provider is removed
/ /by the PowerShell runtime.

protected virtual void Stop();

//The PowerShell runtime call this method when the user
//cancels an opertion.
protected internal virtual void StopProcessing();

DriveCmdletProvider

The DriveCmdletProvider class defines a Windows PowerShell drive provider that supports opera-
tions for adding new drives, removing existing drives, and initializing default drives. For example,
the Filesystem provider provided by Windows PowerShell initializes drives for all volumes that are
mounted, such as hard drives and CD/DVD device drives.

The methods of this class must be overridden to provide the ability to create drives, initialize default

drives (those that the specific provider should supply, given the user environment), as well as to
remove drives.

287

Appendix D: Provider Base Classes and Overrides/Interfaces

Although it is possible to derive from this class, this class does not define the methods needed to get or
change the data (referred to as “item”) in the data store. In most cases, developers should derive from
one of the following classes to implement their own Windows PowerShell providers:

0O ItemCmdletProvider: This base class defines methods that can get, set, and clear the items of a
data store.

0 ContainerCmdletProvider: This base class defines methods that can get the child items (or just
their names) of the data store, as well as methods that create, copy, rename, and remove items of
a data store.

O NavigationCmdletProvider: This serves as the base class for Windows PowerShell providers
that perform operations against items in a multi-level store.

This class derives from the cmdletProvider base class. The class prototype is as follows:

namespace System.Management.Automation.Provider
{
public abstract class DriveCmdletProvider : CmdletProvider
{
//The provider override this method to map drives after
//initialization. All providers should mount a root drive
//to increase discoverability. This root drive might contain
//a set of locations that would be interesting as roots for
//other mounted drives.
protected virtual Collection<PSDriveInfo>
InitializeDefaultDrives() ;

//Use this method to associate provider-specific data
//with a drive by deriving a new class from PSDrivelInfo.
protected virtual PSDriveInfo NewDrive (

PSDriveInfo drive

)

//Use this method to add more parameters to the
//New-Drive cmdlet for the provider.
protected virtual Object NewDriveDynamicParameters();

//Use this method to clean up any provider-specific data
//before the drive is removed.
protected virtual PSDriveInfo RemoveDrive (

PSDriveInfo drive

)

ItemCmdletProvider

This class derives from the DriveCmdletProvider base class. It is a base class for cmdlet providers that
expose an item as a PowerShell path. Deriving a class from ItemCmdletProvider allows the PowerShell

288

Appendix D: Provider Base Classes and Overrides/Interfaces

engine to support a core set of cmdlets for getting and setting data items; however, it does not provide
any container or navigation capabilities.

The ItemCmdletProvider prototype is as follows:

namespace System.Management.Automation.Provider

{

public abstract class ItemCmdletProvider : DriveCmdletProvider

{

//0Override this method to give the user access to the provider
//objects using the get-item and get-childitem cmdlets.
//Nothing is returned and all objects should be written
//using the WriteItemObject method.

//

//Provider should not write objects that are generally hidden
//from the user unless the Force property is set to true.
protected virtual void GetItem(string path);

//Use this method to add additional custom paramaters to

//the Get-Item cmdlet.

protected virtual object GetItemDynamicParameters (
string path

)

//Override this method to allow the user to modify
//provider objects using the set-item cmdlet.
//
//Provider should not write objects that are generally hidden
//from the user unless the Force property is set to true.
protected virtual void SetItem(
string path,
object value
) ;

//Use this method to add additional custom paramaters to
//the Set-Item cmdlet.
protected virtual object SetItemDynamicParameters (
string path,
object value

)

//Override this method to allow the user to clear
//provider objects using the Clear-Item cmdlet.

//

//Provider should not clear or write objects that are
//generally hidden from the user unless the Force property
//1is set to true.

protected virtual void ClearItem(string path) ;

//Use this method to add additional custom paramaters to
//the Clear-Item cmdlet.

289

Appendix D: Provider Base Classes and Overrides/Interfaces

protected virtual object ClearItemDynamicParameters (
string path
) ;

//Override this method to allow the user to invoke
//provider objects using the Invoke-Item cmdlet. The default
//action for the path will be performed.
//
//Provider should not invoke objects that are generally
//hidden from the user unless the Force property
//1is set to true.
protected virtual void InvokeDefaultAction(

string path
);

//Use this method to add additional custom paramaters to

//the Invoke-Item cmdlet. It retrieves the dynamic parameters

//for the item at the indicated path

protected virtual object InvokeDefaultActionDynamicParameters (
string path

);

//Use this method to add additional custom paramaters to

//the Test-Path cmdlet.

protected virtual object ItemExistsDynamicParameters (
string path

)

ContainerCmdletProvider

The ContainerCmdletProvider base class defines a Windows PowerShell container provider that exposes
a container of items to the user. Note that the Windows PowerShell container provider can be used only
when there is one container with items in it. You must implement a Windows PowerShell navigation
provider to support nested containers.

The ContainerCmdletProvider derives from the ItemCmdletProvider base class. By deriving from
ContainerCmdletProvider, a provider gets all the functionality of the ItemCmdletProvider base class,
plus the following set of core provider cmdlets:

Q Get-Childltem
O Rename-Item

0 New-Item
Qa

Remove-Item

290

Appendix D: Provider Base Classes and Overrides/Interfaces

U 00U D

Set-Location
Push-Location
Pop-Location

Get-Location -stack

The prototype of ContainerCmdletProvider is as follows:

namespace System.Management.Automation.Provider

{

//Base class for Cmdlet providers that expose a single
//level container of items.
public abstract class ContainerCmdletProvider : ItemCmdletProvider

{

//Get the children of the item specifed by the path.
//all objects should be written to the WriteItemObject method.
//
//Providers override this method to allow the user access
//to data objects using the Get-ChildItem cmdlet.
//
//The value for recurse should only be true for classes
//derived from NavigationCmdletProvider.
//
//The provider implementation should prevent infinite
//recursion when there are circular links and the like.
//
//Provider should not get objects that are generally
//hidden from the user unless the Force property
//1is set to true.
protected virtual void GetChildItems (

string path,

bool recurse

)

//Use this method to add additional custom paramaters to
//the Get-ChildItem cmdlet.
protected virtual object GetChildItemsDynamicParameters (
string path,
bool recurse

)

//Get names of the children of the specified path. All
//objects should be written to the WriteItemObject method.
//

//Providers override this method to give the user access
//to data objects using the get-childitem -name cmdlet.
//

//The provider implementation should prevent infinite
//recursion when there are circular links and the like.
//

//Provider should not get objects that are generally
//hidden from the user unless the Force property

//1s set to true.

291

Appendix D: Provider Base Classes and Overrides/Interfaces

protected virtual void GetChildNames (
string path,
ReturnContainers returnContainers

)

//Use this method to add additional custom paramaters to

//the Get-ChildItem -name cmdlet.

protected virtual object GetChildNamesDynamicParameters (
string path);

//Rename the item to the new name. The renamed items
//should be written using WriteItemObject.
//
//Providers override this method to support the ability
//to rename objects using the rename-item cmdlet.
//
//Provider should not allow renaming objects that are
//generally hidden from the user unless the Force property
//1is set to true.
//
//RanameItem does not support moving the object from one
//location to another. Use MoveItem instead for that purpose.
protected virtual void RenameItem (

string path,

string newName

)

//Use this method to add additional custom paramaters to
//the Rename-Item cmdlet.
protected virtual object RenameltemDynamicParameters (
string path,
string newName

)

//Create a new item of the specified type at the
//specified path.
//
//Providers override this method to support the ability
//to create new objects using the new-item cmdlet.
//
//itemTypeName is provider specific.
protected virtual void NewItem(

string path,

string itemTypeName,

object newItemValue

)

//Use this method to add additional custom paramaters to
//the New-Item cmdlet.
protected virtual object NewItemDynamicParameters (
string path,
string itemTypeName,
object newItemValue

)

292

Appendix D: Provider Base Classes and Overrides/Interfaces

//Remove the item specified by the path
//
//recurse is a boolean value used to determine if all children
//in a subtree should be removed. This parameter should only
//be true for NavigationCmdletProvider derived classes.
//
//Providers override this method to support the ability
//to remove objects using the remove-item cmdlet.
//
//Provider should not allow removing objects that are
//generally hidden from the user unless the Force property
//1is set to true.
protected virtual void RemoveItem (
string path,
bool recurse
)

//0verride this method to add additional custom paramaters to
//the Remove-Item cmdlet.
protected virtual object RemoveltemDynamicParameters (

string path,

bool recurse

)

//Determines if the item specified by the path has children.
//

//Providers override this method to give the provider
//infrastructure the ability to determine if a particular
//provider object has children without having to retrieve
//all the child items.

protected virtual bool HasChildItems (string path) ;

//Copy an item to a new path. The boolean value of recurse
//tells the provider whether to recurse sub-containers
//when copying, and it should only be true for
//NavigationCmdletProvider derived providers.
//
//Providers override this method to support the ability to
//copy objects using the copy-item cmdlet.
//
//By default overrides of this method should not copy objects
//over existing items unless the Force property is set to
//true.
//
//1f recurse is true, the provider implementation should
//prevent infinite recursion when there are circular links
//and the like.
protected virtual void CopyItem(

string path,

string copyPath,

bool recurse

)

293

Appendix D: Provider Base Classes and Overrides/Interfaces

//Use this method to add additional custom paramaters to
//the Copy-Item cmdlet.
protected virtual Object CopyIltemDynamicParameters (
string path,
string destination,
bool recurse

)

NavigationCmdletProvider

The NavigationCmdletProvider class defines a Windows PowerShell navigation provider that performs
operations for items that use more than one container. Deriving from this class enables users to work with
nested containers using path and recursive commands. The NavigationCmdletProvider class derives
from the ContainerCmdletProvider base class

Here’s the definition of the NavigationCmdletProvider class:

294

namespace System.Management.Automation.Provider

public abstract class NavigationCmdletProvider

ContainerCmdletProvider

//Join two path segments with a path separator character.
protected virtual string MakePath (

string parent,

string child
)i

//Get and return the remaining parent segment of the path.
protected virtual string GetParentPath (

string path,

string root

)

//Return the normalized path relative to the basePath.
protected virtual string NormalizeRelativePath (
string path,
string basePath
)

//Return the child segment of the path
protected virtual string GetChildName (string path) ;

Appendix D: Provider Base Classes and Overrides/Interfaces

//Return true if the path is a container.

//

//Providers supporting ExpandWildcards, Filter, Include, or
//Exclude should ensure that the path passed meets those
//requirements.

protected virtual bool IsItemContainer(string path);

//Move the item specified by path to the destination path.
//All the objects that were moved should be written using
//WriteItemObject method. Implementing this methods allows
//the provider to support the Move-Item cmdlet.
//
//By default overrides of this method should not move objects
//over existing items unless the Force property is set to
//true.
protected virtual void MoveItem(

string path,

string destination

)

//Use this method to add additional custom paramaters to
//the Move-Item cmdlet.
protected virtual object MoveItemDynamicParameters (
string path,
string destination

)

IContentCmdletProvider

The IContentCmdletProvider interface defines a content provider that performs operations on the con-
tent of a data item. Use IContentReader to read contents from an item, and IContentWrite to write
contents to an item.

The interface definition of IContentCmdletProvider is as follows:

namespace System.Management.Automation.Provider
{
//0nly classes that derive from CmdletProvider or its
//derived classes should implement this interface.
public interface IContentCmdletProvider
{
//Get the content reader for the item.

/7

295

Appendix D: Provider Base Classes and Overrides/Interfaces

//By default overrides of this method should not return
//a content reader for hidden objects unless the Force
//property is set to true.

IContentReader GetContentReader (string path) ;

//Use this method to add additional custom paramaters to
//the Get-Content cmdlet.
object GetContentReaderDynamicParameters (string path) ;

//Get the content writer for the item.

//

//By default overrides of this method should not return
//a content writer for hidden objects unless the Force
//property is set to true.

IContentWriter GetContentWriter (string path);

//Use this method to add additional custom paramaters to
//the Set-Content and Add-Content cmdlets.
object GetContentWriterDynamicParameters (string path) ;

//Clear the content from the item.

//

//By default overrides of this method should not clear
//hidden objects unless the Force property is set to true.
void ClearContent (string path) ;

//Use this method to add additional custom paramaters to
//the Clear-Content cmdlet.
object ClearContentDynamicParameters (string path) ;

IContentReader

The IContectReader interface defines the methods used to implement a content reader. The interface
definition is as follows:

namespace System.Management.Automation.Provider
{
public interface IContentReader : IDisposable
{
//Read an array of blocks of data from the item.
//What makes a "block" is provider specific.
IList Read(long readCount) ;

//Set the position from where data will be read next time.
void Seek(long offset, SeekOrigin origin);

//Closes the reader and resources held by the reader.
void Close();

296

Appendix D: Provider Base Classes and Overrides/Interfaces

IContentWriter

The IContectuirite interface defines the methods used to implement a content writer. The interface
definition is as follows:

namespace System.Management.Automation.Provider

{

public interface IContentWriter : IDisposable

{

//Write an array of blocks of data to the item.
//What makes a "block" is provider specific.
IList Write(IList content);

//Set the position from where data will be written next time.
void Seek(long offset, SeekOrigin origin);

//Closes the writer and resources held by the writer.
void Close();

IPropertyCmdletProvider

The IPropertyCmdletProvider interface is used by PowerShell providers to expose properties of an
item in the data store. Implementing this interface enables the provider to support the following
ItemProperty-related cmdlets:

Q Clear-ItemProperty

Q Get-ItemProperty

QO Set-ItemProperty

Following is the IPropertyCmdletProvider interface definition:

namespace System.Management.Automation.Provider

{

public interface IPropertyCmdletProvider

{

//Providers implement this method to support the
//Get-Itemproperty cmdlet.
//
//By default overrides of this method should not retrieve
// properties from hidden objects unless the Force property
//1s set to true.
void GetProperty (

string path,

Collection<string> providerSpecificPickList

)

//Use this method to add additional custom paramaters to
//the Get-Itemproperty cmdlet.

297

Appendix D: Provider Base Classes and Overrides/Interfaces

object GetPropertyDynamicParameters (
string path,
Collection<string> providerSpecificPickList

)

//Providers implement this method to support the
//Set-Itemproperty cmdlet.
//
/ /By default overrides of this method should not set
//properties of hidden objects unless the Force property
//1is set to true.
void SetProperty (

string path,

PSObject propertyValue
)

//Use this method to add additional custom paramaters to
//the Set-Itemproperty cmdlet.
object SetPropertyDynamicParameters (

string path,

PSObject propertyValue) ;

//Providers implement this method to support the
//Clear-Itemproperty cmdlet.
//
//By default overrides of this method should not clear
//properties of hidden objects unless the Force property
//is set to true.
void ClearProperty (

string path,

Collection<string> propertyToClear
)

//Use this method to add additional custom paramaters to
//the Clear-Itemproperty cmdlet.
object ClearPropertyDynamicParameters (

string path,

Collection<string> propertyToClear) ;

IDynamicPropertyCmdletProvider

The IDynamicPropertyCmdletProvider interface, derived from IPropertyCmdletProvider, is used by
PowerShell providers to manage dynamic properties of an item. Implementing this interface enables the
provider to support the following ItemProperty-related cmdlets:

O Copy-ItemProperty
0 Move-ItemProperty

298

Appendix D: Provider Base Classes and Overrides/Interfaces

0O New-ItemProperty
0 Remove-ItemProperty

0 Rename-ItemProperty

Following is the IDynamicPropertyCmdletProvider interface definition:

namespace System.Management.Automation.Provider

{

public interface IDynamicPropertyCmdletProvider :
IPropertyCmdletProvider

//Providers implement this method to support the
//New-Itemproperty cmdlet.
//
//By default overrides of this method should not create
//a new property from hidden objects unless the Force property
//1is set to true.
void NewProperty (

string path,

string propertyName,

string propertyTypeName,

object value

)

//Use this method to add additional custom paramaters to
//the New-Itemproperty cmdlet.
object NewPropertyDynamicParameters (

string path,

string propertyName,

string propertyTypeName,

object value

)

//Providers implement this method to support the
//Remove-Itemproperty cmdlet.
//
//By default overrides of this method should not remove
//properties from hidden objects unless the Force property
//1s set to true.
void RemoveProperty (

string path,

string propertyName

)

//Use this method to add additional custom paramaters to
//the Remove-Itemproperty cmdlet.
object RemovePropertyDynamicParameters (
string path,
string propertyName
)

299

Appendix D: Provider Base Classes and Overrides/Interfaces

//Providers implement this method to support the
//Rename-Itemproperty cmdlet.
//
//By default overrides of this method should not rename
//a property from hidden objects unless the Force property
//1is set to true.
void RenameProperty (

string path,

string sourceProperty,

string destinationProperty
)

//Use this method to add additional custom paramaters to
//the Rename-Itemproperty cmdlet.
object RenamePropertyDynamicParameters (

string path,

string sourceProperty,

string destinationProperty

)

//Providers implement this method to support the
//Copy-Itemproperty cmdlet.
//
//By default overrides of this method should not copy
//properties from or to hidden objects unless the Force
//property is set to true.
void CopyProperty (

string sourcePath,

string sourceProperty,

string destinationPath,

string destinationProperty

)

//Use this method to add additional custom paramaters to
//the Copy-Itemproperty cmdlet.
object CopyPropertyDynamicParameters (
string sourcePath,
string sourceProperty,
string destinationPath,
string destinationProperty
)

//Providers implement this method to support the
//Move-Itemproperty cmdlet.

//

//By default overrides of this method should not move
//properties from hidden objects unless the Force property
//is set to true.

300

Appendix D: Provider Base Classes and Overrides/Interfaces

void MoveProperty (
string sourcePath,
string sourceProperty,
string destinationPath,
string destinationProperty

)

//Use this method to add additional custom paramaters to
//the Move-Itemproperty cmdlet.
object MovePropertyDynamicParameters (

string sourcePath,

string sourceProperty,

string destinationPath,

string destinationProperty

301

_ |

Core Cmdlets for Provider
Interaction

This appendix lists the cmdlets shipped with Windows PowerShell that directly interact with
different provider interfaces. All these cmdlets are common cmdlets that work with any provider.
The provider must, however, implement certain interfaces or derive from certain classes to take
advantage of these cmdlets. The following sections describe these common cmdlets and what a
provider implementation must do to take advantage of them.

Drive-Specific Cmdlets

These cmdlets support operations such as creating a new drive, removing a drive, and so on, in the
context of a provider. A provider implementation must derive from DriveCmdletProvider in order
to take advantage of these cmdlets.

Cmdlet Description

New-PSDrive Supports creating a new drive

Remove-PSDrive Supports removing a drive

Get-PSDrive Supports retrieving information about an existing drive

Item-Specific Cmdlets

These cmdlets support operations such as the getting and setting of data on one or more items
in the context of a provider. A provider implementation must derive from ItemCmdletProvider in
order to take advantage of these cmdlets.

Appendix E: Core Cmdlets for Provider Interaction

Cmdlet Description

Get-Item Supports retrieving information about an existing item

Set-Item Supports setting a value to an item

Clear-Item Supports clearing an item. The item will not be removed, however.

For example, in the context of a variable provider, the following
operation clears the value of variable TestVariable: PS D:\psbook>
Clear-ItemVariable:TestVariable

Invoke-Item Invokes the provider-specific default action on an item

Container-Specific Cmdlets

These cmdlets support operations such as getting children, removing an item, creating an item, and so
on, in the context of a provider. A provider implementation must derive from ContainerCmdletProvider
in order to take advantage of these cmdlets.

Cmdlet Description

Get-ChildItem Retrieves items and child items from a specified location
Rename-Item Renames an existing item

New-Item Creates a new item

Remove-Item Removes an existing item

Copy-Item Copies an existing item from a specified location

Property-Specific Cmdlets

These cmdlets support operations such as getting a property of an item, clearing a property of an item,
and so on, in the context of a provider. A provider implementation must implement the interface
IPropertyCmdletProvider in order to take advantage of these cmdlets.

Cmdlet Description

Get-ItemProperty Retrieves properties of a specified item from a specified location
Set-ItemProperty Sets the value of a property

Clear-ItemProperty Clears the value of a property. The property will not be removed,
however.

304

Appendix E: Core Cmdlets for Provider Interaction

Dynamic Property Manipulation Cmdlets

These cmdlets support operations such as renaming a property, moving a property of an item, and so
on, in the context of a provider. A provider implementation must implement the interface IDynamic-
PropertyCmdletProvider in order to take advantage of these cmdlets.

Cmdlet Description

Copy-ItemProperty Copies a property and its value from a specified location to another
location

Move-ItemProperty Moves a property and its value from a specified location to another
location

New-ItemProperty Creates a new property of an item

Remove-ItemProperty =~ Removes a property of an item

Rename-ItemProperty = Renames a property of an item

Content-Related Cmdlets

These cmdlets are designed to manage the contents of an item. They support operations such as clear-
ing content, retrieving content, and so on. A provider implementation must implement the interfaces
IContentbreak CmdletProvider, IContentReader, and IContentWriter in order to take advantage
of these cmdlets.

Cmdlet Description

Add-Content ~ Adds content to a specified item
Clear-Content Clears the content of a specified item

Get-Content Retrieves the content of a specified item

Set-Content Sets the content of a specified item

Security Descriptor—-Related Cmdlets

These cmdlets are designed to manage the security descriptors of a provider store. A provider
implementation must implement the interface ISecurityDescriptorCmdletProvider in order to
take advantage of these cmdlets.

Cmdlet Description

Get-Acl Gets the security descriptor for an item

Set-Acl Sets the security descriptor for an item

305

SYMBOLS

$Host built-in variable, 198

// (double forward slash), 120

:: (double colon), 120-121
<Autosize> node, 248-249
<Configuration> node, 240
<ViewDefinitions> node, 240
<ViewSelectedBy> node, 241-242
<Wrap> node, 248

\ (backward slash), 119, 144, 153-154
: (colon), 120

/ (forward slash), 119, 144, 153-154
\\ (double backward slash), 120

A

ACLs (access control lists),
ISecurityDescriptorCmdletProvider, 162

activity parameter names, 264-266
adapted members, 37, 54
Add() method, pipelines, 191-192
add-content cmdlet, 133, 160
add-member cmdlet, 54
AddPSSnapIn() method, 177
Add-pssnapin cmdlet

loading custom snap-in, 26

loading standard snap-in, 19-20

saving snap-in configuration vs. using, 22
AddScript () method, pipelines, 191-192
administration design principles, 2
ADSI, PowerShell and, 2
Alias provider, 125-126
AliasAttribute metadata, 273
AllowEmptyCollection metdata, 277
AllowEmptyString metdata, 276
AllowNullAttribute metdata, 276
APIs, and provider errors, 122
appendPath parameter, update-formatdata cmdlet, 239
architecture

GUI integration with command line, 193-194

host application, 9-10

Windows PowerShell Engine, 10
argument validation attributes, 273-276
ArgumentTransformationAttribute metadata, 279-280
assembly, creating RunspaceConfiguration, 177-178
attributes

adding to dynamic parameters at runtime, 280

custom parameter validation, 79-80

metadata. See metadata
-autosize parameter, format-wide cmdlet, 235-236
<Autosize> node, format configuration, 248-249

Index

backward slash, double (\\), provider-direct paths, 120
backward slash (\), provider path separator, 119, 144,
153-154
base members, defined, 37
base provider types
CmdletProvider, 129
ContainerCmdletProvider, 131-132
ItemCmdletProvider, 129-130
NavigationCmdletProvider, 132
overview of, 128-129
BaseObject property, PSObject, 33-34
BeginProcessing() method, 67, 87-91
binding parameters, 66
BufferCells, 230-231
built-in providers
Alias, 125-126
Certificate, 128
Environment, 126
FileSystem, 126
Function, 126-127
overview of, 125
Registry, 127-128
Variable, 128
business logic, GUI integration with command line, 194

C

C# language, code examples in this book, 13
capabilities, provider
design guidelines, 162
ProviderInfo object with, 133
providers working with, 122-123
captions, as prompts, 225
Certificate provider, 128
class inheritance, formatting, 250-252
clear-content cmdlet, 133, 159
ClearItem() method, TtemCmdletProvider, 147
clear-item cmdlet, 130
clear-itemproperty cmdlet, 134, 156, 297-298
cmd . exe, PowerShell cmdlets vs., 63
CmdletAttribute metadata, 271-272
CmdletConfigurationEntry class, 180
CmdletProvider class, 134-162
ContainerCmdletProvider from, 147-152
defined, 129
description of, 283-287
design tips, 163
DriveCmdletProvider from, 129, 139-141
handling provider errors, 121-122
IContentCmdletProvider from, 159-162
IDynamicPropertyCmdletProvider from, 158-159
IPropertyCmdletProvider from, 156-158
ISecurityDescriptorCmdletProvider from, 162

Index

CmdletProvider class (continued)

CmdletProvider class (continued)
ItemCmdletProvider from, 141-147
methods and providers on, 136-138
NavigationCmdletProvider from, 153-156
overview of, 134-136

cmdlets, 3-8
accessing host instance, 198
adding to RunspaceConfiguration, 180
as API layer for GUI applications, 193-195
COM and WMI support for, 8
ContainerCmdletProvider, 131-132
get-command, 5-6
get-help, 4-5
get-member, 6-7
IContentCmdletProvider, 133
IDynamicPropertyCmdletProvider, 134
interacting with host with built-in, 199-204
IPropertyCmdletProvider, 134
ISecurityDescriptorCmdletProvider, 134
ItemCmdletProvider, 129-130
NavigationCmdletProvider, 132
overview of, 3-4
parameter naming guidelines, 263-270
provider interaction, 303-305
providers vs., 118-119
support for existing native OS commands, 7-8
verb naming guidelines, 257-261
verb-noun syntax of, 2
in Windows PowerShell Engine, 10

cmdlets, developing
best practices, 114-116
command discovery, 65-66
command invocation, 67
command-line parsing, 65
documenting cmdlet help, 106-114
generating pipeline output, 91-92
getting started, 63-65
parameter binding, 66
processing pipeline input, 84-91
reporting errors, 92-98
supporting SshouldProcess () method, 98-100
using parameters. See parameters
working with PowerShell path, 101-106

colon (:), drive-qualified paths, 120

colon, double (::), provider paths, 120-121

colors, customizing text, 253-255

COM, PowerShell and, 2, 8

command arguments
binding to command parameters with, 66
command-line parsing using, 65
parameter binding of positional parameters using, 69

command discovery, 65-66, 190

command invocation, 67

command name, 65, 69

command parameters, 65-66, 191

CommandInvocationIntrinsics, CmdletProvider, 138

commands
cmdlets. See cmdlets
constructing pipelines programmatically, 189-193
executing existing native 0S, 7-8
executing PowerShell Engine API, 166-169

Commands collection, 175-176

communication verbs, cmdlet names, 260

compatibility, of PowerShell, 2

complete cell type, 230-231

308

<Configuration> XML node, format, 240
-confirm parameter, ShouldProcess (), 100-101
ConfirmImpact property, ShouldProcess (), 99
console file (.pscl), creating RunspaceConfiguration, 177
constructors
executing custom converters, 58
RunspaceInvoke class, 166-167
ContainerCmdletProvider class
Alias provider deriving from, 126-127
container-specific cmdlets deriving from, 304
defined, 288
description of, 290-294
Environment provider deriving from, 126
Function provider deriving from, 126-127
implementing providers from, 135
NavigationCmdletProvider deriving from, 132, 153
overview of, 131-132, 147-152
Variable provider deriving from, 128
container-specific cmdlets, 304
content-related cmdlets, 305
Continue value
DebugPreference variable, 199
Write-Progress cmdlet, 203
Write-Verbose cmdlet, 200-201
Write-Warning cmdlet, 202
ConvertThroughString, custom PSTypeConverter, 59-60
Copy () method, pipelines, 175
copy-item cmdlet, 131, 149-151
copy-itemproperty cmdlet, 134, 158, 298-301
CreateNestedPipeline() method, 175, 212
CreatePipeline() method, 168-169, 189-193
CreateRunspace () factory method, 168-169, 198
credentials
capabilities, 122
CredentialAttribute metadata, 277-278
getting from user, 226-227
csc.exe, writing snap-ins, 16
CurrentCulture property, PSHost, 210
CurrentUICulture property, PSHost, 210
Custom Control, 246-248
custom view, 235, 246-248
CustomPSSnapin class, 13, 23-27

D

data verbs, cmdlet naming, 259
DataReady property, PipelineReader, 184-185
date parameter names, cmdlets, 266
DebugPreference variable
in cmdlet and host interaction, 204
Write-Debug cmdlet, 199-200
WriteDebugLine method, 222-223
default parameter sets, 72-73
description, ProviderInfo, 133
deserialized objects, formatting, 250
diagnostic verbs, cmdlet names, 260
disallow attributes, 276-278
distance algorithms, 54-55
DLLs, registering snap-ins, 19
double backward slash(\\), provider-direct paths, 120
double colon(::), provider paths, 120-121
double forward slash (//), provider-direct paths, 120
DriveCmdletProvider class
CmdletProvider class vs., 134-135
description of, 287-288

hosts

drive-specific cmdlets deriving from, 303
ItemCmdletProvider deriving from, 130, 141-142
overview of, 129, 139-141

drive-qualified paths, 120

drives
core cmdlets for, 303
ProviderInfo object, 133
providers and, 121

dynamic parameters, 133, 280

dynamic property manipulation cmdlets, 305

E

EndProcessing() method, 67
EnterNestedPrompt ()method, PSHost, 211-212
Environment provider, 126
error pipes
defined, 172
retrieving non-terminating errors from, 173
using RunspaceInvoke with, 167-168
ErrorDetails class, 95-96
ErrorRecord objects
handling provider errors, 121-122
non-terminating errors returned as, 173
overview of, 174
reporting cmdlet errors, 93-95
errors
asynchronous pipeline, 182-185
design tips, 163
DriveCmdletProvider, 140
initialization, 56
provider developers handling, 121-122
runtime, 55-56
errors, reporting cmdlet, 92-98
creating ErrorDetails, 95-96
creating ErrorRecord, 93-95
non-terminating and terminating errors, 97-98
overview of, 92-93
PowerShell path, 101-106
ETS (Extended Type System), 29. See also PSObject
exceptions
ErrorRecord, 93
from ETS during runtime, 55-56
Exclude operation, capabilities, 122
exit command, 214
ExitNestedPrompt () method, PSHost, 212-214
expansion, path, 121
explicit cast operator, 58
Export-console cmdlet, 22, 23
extended members
defining methods and properties with, 31
lookup algorithms and, 54
overview of, 37
Extended Type System (ETS), 29. See also PSObject

F

F & 0. See Formatting & Output
FileSystem provider, 126
filters
capabilities and, 122
CmdletProvider, 138
Format and Output (F & 0). See Formatting & Output
format parameter names, cmdlets, 266-267
format strings, 249

FormatConfigurationEntry class, 180
format-custom cmdlet, 235-237
format-list cmdlet, 234-237
format-table cmdlet, 224, 234, 236-237
Formatting & Output, 233
class inheritance, 250-252
colors, 253-255
Custom Control, 246-248
format configuration file anatomy, 240-243
format configuration file example, 237-238
format strings, 249
formatting deserialized objects, 250
formatting without *.format.psixml, 236-237
ListControl, 244-246
loading format file(s), 238-240
miscellaneous configuration entries, 248-249
overview of, 224-225
selection sets, 253
TableControl, 243-244
view types, 233-236
WideControl, 246
formatting files, RunspaceConfiguration, 180
format-wide cmdlet, wide view, 235-236
forward slash, double (//), provider-direct paths, 120
forward slash (/), provider path separator, 119, 144,
153-154
Function provider, 126-127
functions, RunspaceConfiguration, 181

G

get-acl cmdlet, 134, 162
GetBufferContents () method, BufferCells, 230-231
get-childitem cmdlet, 131, 148, 290
get-command cmdlet, 5-6, 19-20
get-content cmdlet, 133, 159-161
get-help cmdlet

about providers, 117

documenting cmdlet help, 106-114

overview of, 4-5
GetItem() method, ItemCmdletProvider, 145-146
get-item cmdlet, 130
get-itemproperty cmdlet, 134, 156-158, 297-298
get-location cmdlet, 132, 147
get-member cmdlet, 6-8
get-pssnapin cmdlet, 10-11, 19
get-pssnapin -registered command, 22-23
GetResolvedProviderPathFromPSPath() method, file path

resolution, 103-106

GetVariable() method, SessionStateProxy, 178
GroupBy, format configuration files, 242-243
GUI applications, cmdlets as API layer for, 193-195
GUID, creating for each host instance, 208

H

Hello World provider, 123-125, 135
help commands, 4-5, 106-114
host APIs, 9-10, 115
$Host built-in variable, 198
Host property, PSCmdlet class, 198
hosts, 197-231
custom, 194-195
interaction with built-in cmdlets, 199-204
interaction with cmdlets, 204-207

309

Index

hosts (continued)

hosts (continued) IPropertyCmdletProvider interface
interaction with PowerShell Engine, 197-199 definition for, 297-298
using PSHost class. See PSHost class IDynamicPropertyCmdletProvider deriving from, 134,
using PSHostRawUserInterface class, 227-231 158
using PSHostUserInterface class, 221-227 Item-property cmdlets for, 134, 297, 304-305

working with, 156-158
ISecurityDescriptorCmdletProvider interface

| cmdlets supported by, 134, 305
IContentbreakCmdletProvider interface, 305 defined, 134
IContentCmdletProvider interface, 132-133, 159-162, overview of, 162
295-296 IsGettable property, PSPropertyInfo, 39
IContentReader interface IsItemContainer () method, NavigationCmdletProvider,
cmdlets supported by, 305 154
description of, 296-297 IsSettable property, PSPropertyInfo, 39
overview of, 159 IsValidPath() method, ItemCmdletProvider, 143
IContentWriter interface ItemCmdletProvider class
cmdlets supported by, 305 cmdlets supported by, 303-304
description of, 297 ContainerCmdletProvider deriving from, 131-132, 147
overview of, 159-160 description of, 288-290
IDynamicCmdletProvider interface, 305 implementing providers from, 135
IDynamicParameters interface, 280 overview of, 129-130
IDynamicPropertyCmdletProvider interface working with, 141-147
description of, 298-301 ItemExists() method
overview of, 134 IContentCmdletProvider, 161
working with, 158-159 IPropertyCmdletProvider, 158
IEnumerable interface, 172-173 item-specific cmdlets, 303-304
ImmediateBaseObject property, PSObject, 33-34
implicit cast operator, custom converters, 58 J
Include operation, capabilities, 123
inheritance, class, 250-252 join-path emdlet, 132, 154
initialization errors, 56
InitializeDefaultDrives() method,
DriveCmdletProvider, 139 L
input leading cell types, 230-231
closing input pipe, 182 lifecycle verbs, naming cmdlets, 261
passing to pipeline, 172-173 list view, 234-235, 244-246
pipeline parameter binding for, 87-91 ListControl, 244-246
processing pipeline, 84-87 ListEntries, 245
using RunspaceInvoke with, 167-168 LocalRunspace class, 168-169, 187-188
Inquire value lookup algorithms, 54
DebugPreference variable, 199
Write-Progress cmdlet, 203
Write-Verbose cmdlet, 200-201 M
Write-Warning cmdlet, 202 MakePath() method, NavigationCmdletProvider, 154
installation, PowerShell, 3 make-shell.exe, 178
installutil.exe mandatory parameters, 67-68
registering custom snap-ins, 26 member sets, PSObject
registering snap-ins, 17-19 intrinsic, 55
uninstalling custom snap-in, 26 overview of, 51
uninstalling standard snap-ins, 20-21 PSMemberSet, 52-53
writing snap-ins, 15-16 PSPropertySet, 51-52
InstancelD property, PSHost class, 208-209 member types, PSObject, 38-48
interfaces, optional provider, 132-134 methods, 46-50
intrinsic members, PSObject, 55 overview of, 37-38
invocation, command, 67 properties, overview, 38-39
InvocationInfo, ErrorRecord, 93, 95 PSAliasProperty, 45-46
Invoke() method PSCodeProperty, 43-45
executing command in PowerShell Engine, 169 PSNoteProperty, 40-41
passing input to pipeline, 172-173 PSProperty, 39-40
retrieving output from pipeline, 170 PSScriptProperty, 41-43
using RunspacelInvoke with, 167 sets, 51-53
InvokeAsync () method, Pipeline class, members, PSObject
181-182 base, adapted and extended, 37
invoke-item cmdlet, 130, 146 distance algorithms, 54-55
ipconfig.exe command, 7-8 intrinsic, 55

310

Pipeline Execution Thread

lookup algorithms, 54
overview of, 34-35
PSMemberInfoCollection and, 35-36
ReadOnlyPSMemberInfoCollection and, 36-37
well-known, 62
MergeMyResults method, pipelines, 191
MergeUnclaimedPreviousResults property, pipelines,
190-191
message strings, 96
messages, as prompts, 225
metadata, 271-281
adding attributes to dynamic parameters at runtime, 280
AliasAttribute, 273
allow and disallow attributes, 276-278
argument validation attributes, 273-276
ArgumentTransformationAttribute, 279-280
CmdletAttribute, 271-272
overview of, 271
ParameterAttribute, 272-273
ValidateArgumentsAttribute, 278
ValidateEnumeratedArgumentsAttribute, 279
ValidateScriptAttribute, 281
MoveItem() method, NavigationCmdletProvider, 155
move-item cmdlet
ContainerCmdletProvider, 151
NavigationCmdletProvider, 132, 155
move-itemproperty cmdlet, 134, 158, 298-301

name node, format configuration files, 241
Name property

PSHost class, 209-210

writing snap-ins, 15-16
named parameter binding, 76
naming collisions, lookup algorithms, 54
naming conventions. See also parameter naming guidelines,

cmdlets

cmdlet best practices, 114-115

custom snap-ins, 25

DriveCmdletProvider, 139

Get-Help cmdlet, 106

writing snap-ins, 15-16
NavigationCmdletProvider class

Certificate provider deriving from, 128

defined, 132

description of, 294-295

FileSystem provider deriving from, 126

overview of, 153-156

Registry provider derived from, 127
nested containers, NavigationCmdletProvider, 153
nested pipelines

exiting, 212-213

invoking, 211-212

overview of, 174-175
.NET Framework, 2, 16
NewDriveDynamicParameters () method,

DriveCmdletProvider, 139

new-item cmdlet, 131, 151, 290
new-itemproperty cmdlet, 134, 158, 299-301
new-psdrive cmdlet, 129
non-terminating errors

defined, 93

reporting, 97-98

retrieving from error pipes, 173

NotifyBeginApplication()method, PSHost class, 214
NotifyEndApplication()method, PSHost class, 214
nouns, cmdlet naming best practices, 114

o

object inheritance, 239
object-based language, PowerShell’s, 2
ObjectSecurity class,
ISecurityDescriptorCmdletProvider, 162
Open () method, executing command, 168-169
OpenAsync () method, Runspace class, 181, 187-188
out-default cmdlet, 254-255
out-host emdlet, 203-204
output
collecting synchronously invoked pipeline, 173
generating pipeline, 91-92
reading asynchronous pipeline, 182-185
retrieving pipeline, 170-172
using RunspaceInvoke, 167-168

P

parameter binding
overview of, 66
and parameter sets, 75-78
pipeline, 87-91
for positional parameters, 69-70
processing pipeline input with, 84-91
parameter naming guidelines, cmdlets, 263-270
activity, 264-266
date/time, 266
format, 266-267
property, 267-268
quantity, 268
resource, 268-269
security, 269-270
ubiquitous, 263-264
parameter sets, 71-78
default, 72-73
defining parameters belonging to multiple, 73-75
overview of, 70-71
parameter binding related to, 75-76
pipeline parameter binding for, 88-91
ParameterAttribute metadata, 272-273
parameters, 67-84
best practices for cmdlet naming, 115
mandatory, 67-68
overview of, 67
parameter sets, 71-78
positional, 68-71
transformation, 80-84
validation, 78-80
parent-child relationships, ContainerCmdletProvider,
147-148
pParse method, custom converters, 58
parsing, command-line, 65
p ords, for credentials, 225
paths
design guidelines, 162
NavigationCmdletProvider and, 153
provider, 119-121
supported by ItemCmdletProvider, 129-130
working with, 101-106
Pipeline Execution Thread, 220-221

311

Index

PipelineReader class

PipelineReader class ,182-185 CmdletProvider, 136-138
pipelines defining with extended members, 31
collecting output for, 173 examining with get-member, 6-7
constructing programmatically, 189-193 objects wrapped by PSObject, 31
copying between runspaces, 175-176 ParameterAttribute metadata, 272-273
executing commands, 168-169 ProviderInfo object, 133-134
generating output, 91-92 PSHost class. See PSHost class
Input, Output and Error properties, 172 PSHostRawUserInterface class, 229
nested, 174-175 PSObject, 38-46
parameter binding, 87-91 property parameter names, cmdlets, 267-268
passing input to, 172-173 property-specific cmdlets, 304-305
Pipeline class, 165 ProviderCapabilities enumerated type
processing input, 84-87 design guidelines, 162
retrieving output from, 170-172 overview of, 122-123
reusing, 175 ProviderInfo object, 133
in Windows PowerShell Engine, 10, 165-166, 198 ProviderConfigurationEntry class, 180
pipelines, running asynchronously, 181-187 provider-direct paths, 120
calling InvokeAsync, 181-182 ProviderInfo object, Hello World provider, 132-133
closing input pipe, 182 provider-internal paths, 120-121
monitoring StateChanged event, 185-186 provider-qualified paths, 120
reading output and error, 182-185 providers, 117-164
reading terminating errors, 186-187 adding to RunspaceConfiguration, 180
stopping, 187 base provider types, 128-132
PipelineStateInfo.Reason, 186-187 built-in, 125-128
pop-location ecmdlet, 131 capabilities, 122-123
positional parameters CmdletProvider. See CmdletProvider class
binding, 69-70, 76-78 cmdlets vs., 118-119
overview of, 68-71 core cmdlets for interaction with, 303-305
remaining-argument parameter, 70-71 design guidelines and tips, 162-163
PowerShell, introduction, 1-11 drives, 121
cmdlets, 3-8 error handling, 121-122
design principles, 1-3 Hello World provider, 123-125
extending. See snap-ins optional interfaces for, 132-134
high-level architecture of, 9-11 overview of, 117-118
PowerShell Engine API. See also hosts paths, 119-121
asynchronous runspace operations, 187-188 reasons for implementing, 118
cmdlets as API layer for GUI applications, 193-195 providers, base classes and interfaces, 283-301
configuring runspace, 176-181 CmdletProvider, 283-284
constructing pipelines programmatically, 189-193 ContainerCmdletProvider, 290-294
copying pipeline between runspaces, 175-176 DriveCmdletProvider, 287-288
ErrorRecord type, 174 IContentCmdletProvider, 295-296
executing command line, 166-168 ItemCmdletProvider, 288-290
getting started, 166 NavigationCmdletProvider, 290
nested pipelines, 174-175 PSAdapted MemberSet, 55
output pipe in synchronous execution, 173 PSAliasProperty, 45-46
passing input to pipeline, 172-173 PSBase MemberSet, 55
retrieving non-terminating errors from error pipe, 173 .pscl (console file), creating RunspaceConfiguration from,
retrieving pipeline output, 170-172 177
reusing pipelines, 175 PSCodeProperty, 43-45
running pipeline asynchronously, 181-187 PSCustomObject, 31
runspaces and pipelines, 165-166 PSDriveInfo object
PowerShell.exe, 9-10 creating with DriveCmdletProvider, 129, 139-141
precedence, TypeNames, 53-54 design tips, 163
prependPath parameter, update-formatdata cmdlet, 239 NavigationCmdletProvider, 153
PrivateData property, PSHost class, 210 PSExtended MemberSet, 55
ProcessRecord() method, command invocation, 67 PSHost class, 207-221
profiles, saving snap-in configuration, 23 CurrentCulture property, 210
ProgressPreference variable, Wirite-Progress cmdlet, CurrentUICulture property, 210
203, 205, 224 defined, 198
ProgressRecord object, 223-224 EnterNestedPrompt ()method, 211-212
Prompt ()method, PSHostUserInterface class, 224-226 ExitNestedPrompt ()method, 212-214
PromptForCredential () method, PSHostUserInterface InstancelD property, 208-209
class, 226-227 Name property, 209-210
properties NotifyBeginApplication()method, 214
AliasAttribute metadata, 273 NotifyEndApplication()method, 214

312

RunspaceStateInfo property, runspace StateChanged event

overview of, 207-208
PrivateData property, 210
SetShouldExit ()method, 214-221
Version property, 210
PSHostRawUserInterface class, 198-199,
227-231
PSHostUserInterface class
defined, 198-199
overview of, 221-222
Prompt ()method, 224-226
PromptForCredential ()method, 226-227
read methods, 227
write methods, 224
WriteDebugLine()method, 222-223
WriteErrorLine()method, 223-224
WriteProgress ()method, 223-224
WriteVerboseLine ()method, 223
WriteWarningLine()method, 223
PSMemberInfo objects, 34-37
PSMemberInfoCollection, 35-36
PSMemberSet, 52-53
PSNoteProperty, 40-41
PSObject
constructing, 30-33
distance algorithm, 54-55
errors and exceptions, 55-56
lookup algorithm, 54
members, 34-37
methods, 46-51
overview of, 29-30, 37-38
sets, 51-53
supporting intrinsic members and MemberSets, 55
ToString mechanism, 60
type configuration, 60-62
type conversion, 57-60
TypeNames, 53-54
using ImmediateBaseObject and BaseObject,
33-34
using objects returned from pipelines, 170
using with IPropertyCmdletProvider, 158
PSObject, properties, 38-46
defined, 34
overview of, 38-39
PSAliasProperty, 45-46
PSCodeProperty, 43-45
PSNoteProperty, 40-41
PSParameterizedProperty, 50-51
PSProperty, 39-40
PSScriptProperty, 41-43
PSObject(object), 31
PSProperty, 39-40
PSPropertyInfo, 39
PSPropertySet, 51-52
PSScriptProperty, 41-43
PSSnapin class
defined, 13
writing custom snap-ins, 23-27
writing standard snap-ins. See snap-ins, standard
PSTypeConverter class, 59-60
push-location cmdlet, 131-132

quantity parameter names, cmdlets, 268

Read() methods, output pipes, 173
read methods, PSHostUserInterface class, 227
Read-Host built-in cmdlet, 204

ReadKey () method, PSHostRawUserInterface class, 229

ReadLine () host API, 204, 227
ReadLineAsSecureString ()host API, 204, 227
ReadOnlyPSMemberInfoCollection, 36-37
ReadToEnd () method, non-terminating errors, 173
registry

list of registered snap-ins in, 19

registering custom snap-ins, 26

registering snap-in without implementing snap-in class,

22-23
registering snap-ins, 17-19
unregistering snap-ins, 20-21
Registry provider, 127-128
remaining-argument parameter, 70-71

RemoveDrive () method, DriveCmdletProvider, 139-140

remove-item cmdlet, 131, 290
remove-itemproperty cmdlet, 134, 158, 299-301
remove-psdrive cmdlet, 129
RemovePSSnapIn() method, 177
remove-pssnapin cmdlet

Hello World provider, 133

removing custom snap-in, 26

removing snap-in, 20
rename-item cmdlet, 131
rename-item cmdlet, 290
rename-itemproperty cmdlet, 134, 299-301
Reset () method, configuration collection, 180
resolve-path cmdlet, 132
resource parameter names, cmdlets, 268-269
resource strings, ErrorDetails object, 96
RunInstaller attribute, writing snap-ins, 14-16
Runspace class. See also runspaces
RunspaceConfiguration object

adding and removing snap-ins, 177

creating from assembly, 177-178

creating from console file, 177

with custom configuration, 176

executing command in PowerShell Engine, 166-167

fine-tuning, 179-181

hosting applications, 197-199

loading format file(s), 240

using SessionStateProxy to set/retrieve variables,

178

RunspaceFactory class, creating runspace, 168-169

RunspacelInvoke class, 166-168
runspaces
adding and removing snap-ins, 177
asynchronous operations, 187-188
copying pipeline between, 175-176
creating from assembly, 177-178
creating from console file, 177
creating with custom configuration, 176
executing command in PowerShell Engine, 168-169
fine-tuning, 179-181
for hosting applications, 197-198
PowerShell Engine API, 165-166
Runspace class, 165

using SessionStateProxy to set/retrieve variables, 178
RunspaceStateInfo property, runspace StateChanged

event, 188

313

Index

runtime

runtime
adding attributes to dynamic parameters at, 280
command-line parsing at, 65
errors, 55-56

S

ScriptConfigurationEntry, 181

scripts
accessing host instance with, 198
accessing PSObject with, 62
design principles, 2-3

security
descriptor-related cmdlets for, 305
parameter names for cmdlets, 269-270
PromptForCredential () methods for, 226-227
verbs, 261

selection sets, formatting, 253

SelectSingleNode () method, ItemCmdletProvider, 145

SessionState object
CmdletProvider, 137
design guidelines, 133
ExitNestedPrompt () method, 213
runspaces, 165
SessionStateProxy property, runspaces, 178
set-acl cmdlet, 134, 162
set-content cmdlet, 133, 159-161
SetItem() method, ITtemCmdletProvider, 146
set-item cmdlet, 130
set-itemproperty cmdlet, 134, 156, 297-298
set-location cmdlet
ContainerCmdletProvider, 131, 147
NavigationCmdletProvider, 154
SetShouldExit ()method, PSHost class, 214-221
SetVariable() method, SessionStateProxy, 178
shells, object-based vs. text-based, 2
ShouldContinue () method
best practices for cmdlets, 115
CmdletProvider used with, 137, 163
working with, 101
ShouldProcess () method
best practices for cmdlets, 115
CmdletProvider used with, 136-137
NavigationCmdletProvider used with, 155-156
overview of, 98-100
provider capabilities using, 122-123
working with, 100-101
SilentlyContinue value
DebugPreference variable with, 199
Write-Progress cmdlet with, 203
Write-Verbose cmdlet with, 200-201
Write-Warning cmdlet with, 202
SnapinName key, snap-ins, 17-19
shap-ins
configuring runspace by adding and removing, 177
defined, 10
loading format file(s) with, 240
overview of, 14
providers within, 117
types of, 13
viewing list of, 10-11
writing custom, 23-27
snap-ins, standard, 14-23
getting list of, 19
loading to running shell, 19-20

314

overview of, 14
registering, 17-19
registering without implementing snap-in class, 21-22
removing from running shell, 20
saving configuration, 22
starting with saved configuration, 22-23
unregistering, 20-21
using profile to save configuration, 23
writing, 14-16
sort-object cmdlet, 172-173
Standard PS Language conversions, 57-58
Start () method, adding providers, 135
StartDynamicParameters() method, 136
StateChanged event
handling runspace, 188
monitoring pipeline, 185-186
reading terminating errors, 186-187
Stop () method, pipeline, 187
Stop value
DebugPreference variable, 199
Write-Progress cmdlet, 203
Write-Verbose cmdlet, 200-201
Write-Warning cmdlet, 202
StopAsync () method, pipeline, 187
SupportsShouldProcess property, ShouldProcess ()
method, 99
System.Management .Automation assembly, 15, 166

T

table view, 234, 243-244
TableControl, 243-244
TableHeaders, TableControl, 243-244
TableRowEntries, TableControl, 244
Target object, ExrrorRecord, 93
terminating errors
defined, 93
handling from commands, 171-172
reading via PipelineStateInfo.Reason, 186-187
reporting, 97-98
test-path cmdlet, 132
this pointer, PSMemberSet, 52-53
ThrowTerminatingError () method, 97, 186
ThrowTerminatingError (ErrorRecord)
CmdletProvider, 136
DriveCmdletProvider , 140
handling provider errors, 122
time parameter names, cmdlets, 266
ToString (), PSObject, 60, 167
trailing cell type, 230-231
transformation, parameter, 80-84
Trap statement, runtime errors, 55-56
type configuration (TypeData), 60-62
type conversion, 57-60
type files, adding to RunspaceConfiguration, 181
TypeConfigurationEntry class, 181
TypeConverter, custom converters, 58
TypeNames
basing extended members on, 37
determining type of PSObject with, 55
overview of, 53-54

U

-u parameter, snap-ins, 20-21, 26
ubiquitous parameter names, cmdlets, 263-264

XmlProviderUtils.NormalizePath()

UICulture, host, 210

unbound argument list, 69-70

unbound positional parameter list, 69-70
Update () method, configuration collection, 180
update-formatdata cmdlet, 239

user feedback APls, developing cmdlets, 114-115
usernames, prompting for credentials, 225

\'}

ValidateArgumentsAttribute metadata, 278
ValidateCountAttribute metadata, 275
ValidateEnumeratedArgumentsAttribute metadata, 279
ValidateLengthAttribute metadata, 274-275
ValidateNotNull attribute metadata, 277
ValidateNotNullOrEmtpy attribute metadata, 277
ValidatePatternAttribute metadata, 274
ValidateRangeAttribute metadata, 275-276
ValidateScriptAttribute metadata, 281
ValidateSetAttribute metadata, 274
validation parameters, 78-80
values, Write-Debug cmdlet, 199
Variable provider, 128
variables, built-in cmdlets interacting with host, 199-204
Vendor property, snap-ins, 16
verb naming guidelines, cmdlets

common verbs, 257-258

communication verbs, 260

data verbs, 259

diagnostic verbs, 260

lifecycle verbs, 261

security verbs, 261
verb-noun syntax, of cmdlets

best practices for, 114

defined, 2

providers vs. cmdlets, 118-119
VerbosePreference variable

in cmdlet and host interaction, 204-205

Write-Verbose cmdlet, 200-201

WriteVerboseLine method, 223
VerbsCommon class, cmdlet verbs, 257-258
VerbsCommunications class, naming cmdlets, 260
VerbsData class, naming cmdlets, 259
VerbsDiagnostic class, naming cmdlets, 260
VerbsLifeCycle class, naming cmdlets, 261
VerbsSecurity class, naming cmdlets, 261
Version property, PSHost class, 210
<ViewDefinitions> XML node, format configuration, 240
views

custom, 235

format configuration files, 241

list, 234-235

table, 234

types of, 233-234

wide, 235-236
<ViewSelectedBy> node, format configuration,

241-242

W

WaitHandle property, PipelineReader class, 183-184

WarningPreference variable, cmdlet and host interaction,
205

well-known members, PSObject, 62

-whatif parameter, ShouldProcess () method, 100

wide view, 235-236, 246
WideControl, 246
WideEntries, 246
wildcard characters, 4, 122-123
WildcarePattern class, 122-123
Windows PowerShell Engine, 10
WMI, PowerShell and, 2, 8
<Wrap> node, format configuration, 248
Write() method
IContentCmdletProvider interface, 161-162
input pipe, 172, 173
PSHostUserInterface class, 224
Write-Host and Out-Host cmdlets, 203-204
Write-Debug cmdlet, 199-200
WriteDebug () method, 115, 204-207
WriteDebugLine()method, PSHostUserInterface class,
222-223
WriteError (ErrorRecord)
best practices for, 115
DriveCmdletProvider and, 140
handling provider errors, 122
reporting non-terminating errors with, 97
writing to error stream with, 207
WriteErrorLine()method, PSHostUserInterface class,
223-224
Write-Host built-in cmdlet, 203-204
WriteItemObject () method
CmdletProvider, 136
ItemCmdletProvider, 146
WriteItemProperty() method,
IDynamicPropertyCmdletProvider, 158
WriteLine () method
PSHostUserInterface class, 224
Write-Host and Out-Host cmdlets, 203-204
WriteOjbect () method
generating pipeline output, 91-92
writing to output stream with, 207
Write-Progress built-in cmdlet, 203
WriteProgress () method
best practices for, 115
cmdlet/host interaction and, 205, 207
CmdletProvider and, 163
PSHostUserInterface class with, 223-224
WriteVerbose ()method
best practices for, 115
cmdlet/host interaction and, 204-205, 207
CmdletProvider and, 136
ItemCmdletProvider and, 144
write-verbose cmdlet, 200-201
WriteVerboseLine()method, PSHostUserInterface
class, 223
WriteWarning() method
best practices for, 115
cmdlet/host interaction and, 205, 207
CmdletProvider and, 136
DriveCmdletProvider and , 140
Write-Warning cmdlet, 202, 223
WriteWarningLine ()method, PSHostUserInterface
class, 223

X

XmlDriveInfo class, 140-141
XmlProviderUtils.NormalizePath(), 144

315

Index

Programmer to Programmer™
[

¥ |
2

.

@ cooz ranan’

=

mssannﬂumx"lum?_

4d3INEA

"d!""‘gi'/\

PO ——
M Bulunuesiosg goa,

L

=
0

B3 9 ++D yensip §1

Take your library
wherever you go.

Now you can access more than 200 complete Wrox books Find books on

online, wherever you happen to be! Every diagram, description, e ASP.NET e .NET
screen capture, and code sample is available with your * C#/C++ Open Source
e Database e PHP/MySQL

subscription to the Wrox Reference Library. For answers when « General « SQL Server
¢ Visual Basic

and where you need them, go to wrox.books24x7.com and * Java
e Mac e Web

subscribe today! o Microsoft Office ¢ XML

wWww.wrox.com

